Constraining alternative polarization states of gravitational waves from individual black hole binaries using pulsar timing arrays

Pulsar timing arrays are sensitive to gravitational wave perturbations produced by individual supermassive black hole binaries during their early inspiral phase. Modified gravity theories allow for the emission of gravitational dipole radiation, which is enhanced relative to the quadrupole contribution for low orbital velocities, making the early inspiral an ideal regime to test for the presence of modified gravity effects. Using a theory-agnostic description of modified gravity theories based on the parametrized post-Einsteinian framework, we explore the possibility of detecting deviations from general relativity using simulated pulsar timing array data, and provide forecasts for the constraints that can be achieved. We generalize the enterprise pulsar timing software to account for possible additional polarization states and modifications to the phase evolution, and study how accurately the parameters of simulated signals can be recovered. We find that while a pure dipole model can partially recover a pure quadrupole signal, there is little possibility for confusion when the full model with all polarization states is used. With no signal present, and using noise levels comparable to those seen in contemporary arrays, we produce forecasts for the upper limits that can be placed on the amplitudes of alternative polarization modes as a function of the sky location of the source.

[1]  B. A. Boom,et al.  Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. , 2018, Physical review letters.

[2]  P. S. Ray,et al.  The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.

[3]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[4]  B. A. Boom,et al.  First Search for Nontensorial Gravitational Waves from Known Pulsars. , 2017, Physical review letters.

[5]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[6]  K. Chatziioannou,et al.  Erratum: Model-independent test of general relativity: An extended post-Einsteinian framework with complete polarization content [Phys. Rev. D 86 , 022004 (2012)] , 2017 .

[7]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226 , 2016, 1603.08955.

[8]  R. Karuppusamy,et al.  High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.

[9]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[10]  E. Barausse,et al.  Slowly rotating black holes in Einstein-æther theory , 2015, 1512.05894.

[11]  Tsutomu Kobayashi,et al.  Perturbations of Cosmological and Black Hole Solutions in Massive gravity and Bi-gravity , 2015, 1509.02096.

[12]  R. Brito,et al.  Black holes in massive gravity , 2015, 1503.07529.

[13]  J. Gair,et al.  Expected properties of the first gravitational wave signal detected with pulsar timing arrays , 2015, 1503.04803.

[14]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[15]  N. Yunes,et al.  Projected constraints on Lorentz-violating gravity with gravitational waves , 2014, 1412.4132.

[16]  M. Volkov Hairy Black Holes in Theories with Massive Gravitons , 2014, 1405.1742.

[17]  D. Stinebring,et al.  GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES , 2014 .

[18]  N. Yunes,et al.  Publisher’s Note: Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations [Phys. Rev. D 89 , 084067 (2014)] , 2014 .

[19]  N. Yunes,et al.  Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations , 2013, 1311.7144.

[20]  N. Cornish,et al.  Publisher's Note: Rosetta stone for parametrized tests of gravity [Phys. Rev. D 88, 064056 (2013)] , 2013 .

[21]  N. Cornish,et al.  Rosetta stone for parametrized tests of gravity , 2013, 1307.8144.

[22]  J. Ellis A Bayesian analysis pipeline for continuous GW sources in the PTA band , 2013, 1305.0835.

[23]  X. Siemens,et al.  Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays , 2013, Living reviews in relativity.

[24]  X. Siemens,et al.  AN EFFICIENT APPROXIMATION TO THE LIKELIHOOD FOR GRAVITATIONAL WAVE STOCHASTIC BACKGROUND DETECTION USING PULSAR TIMING DATA , 2013, 1302.1903.

[25]  Rutger van Haasteren,et al.  Understanding and analysing time-correlated stochastic signals in pulsar timing , 2012, 1202.5932.

[26]  D. Lorimer,et al.  ON PULSAR DISTANCE MEASUREMENTS AND THEIR UNCERTAINTIES , 2012, 1206.0428.

[27]  X. Siemens,et al.  OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS , 2012, 1204.4218.

[28]  K. Chatziioannou,et al.  Model-Independent Test of General Relativity: An Extended post-Einsteinian Framework with Complete Polarization Content , 2012, 1204.2585.

[29]  X. Siemens,et al.  Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays , 2011, 1111.5661.

[30]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[31]  T. Jacobson,et al.  Black holes in Einstein-aether and Hořava-Lifshitz gravity , 2011, 1104.2889.

[32]  Massimo Tinto,et al.  Pulsar timing sensitivities to gravitational waves from relativistic metric theories of gravity , 2011, 1102.4824.

[33]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[34]  F. Pretorius,et al.  Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework , 2009, 0909.3328.

[35]  G. Hobbs The Parkes Pulsar Timing Array , 2009, 1307.2629.

[36]  A. Vecchio,et al.  Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.

[37]  A. Vecchio,et al.  The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.

[38]  B. Foster Strong field effects on binary systems in Einstein-aether theory , 2007, 0706.0704.

[39]  C. Eling,et al.  Black holes in Einstein-aether theory , 2006, gr-qc/0604088.

[40]  A. Jaffe,et al.  Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.

[41]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[42]  C. Will Gravitational radiation from binary systems in alternative metric theories of gravity - Dipole radiation and the binary pulsar , 1977 .

[43]  Hugo D. Wahlquist,et al.  Response of Doppler spacecraft tracking to gravitational radiation , 1975 .