Sine-Gordon Equation: From Discrete to Continuum

In the present chapter, we consider two prototypical Klein–Gordon models: the integrable sine-Gordon equation and the non-integrable ϕ 4 model. We focus, in particular, on two of their principal solutions, namely the kink-like heteroclinic connections and the time-periodic, exponentially localized in space breather waveforms. Two limits of the discrete variants of these models are contrasted: on the one side, the analytically tractable original continuum limit, and on the opposite end, the highly discrete, so-called anti-continuum limit of vanishing coupling. Numerical computations are used to bridge these two limits, as regards the existence, stability and dynamical properties of the waves. Finally, a recent variant of this theme is presented in the form of \(\mathcal{P}\mathcal{T}\)-symmetric Klein–Gordon field theories and a number of relevant results are touched upon.

[1]  A. Scott,et al.  A Nonlinear Klein-Gordon Equation , 1969 .

[2]  A. Sievers,et al.  Intrinsic localized modes in anharmonic crystals. , 1988, Physical review letters.

[3]  C. Bender,et al.  Observation of PT phase transition in a simple mechanical system , 2012, 1206.4972.

[4]  A. Scott,et al.  A restricted Bäcklund transformation , 1973 .

[5]  Demonstration of the stability or instability of multibreathers at low coupling , 2002, nlin/0208014.

[6]  J. Shatah,et al.  Orbits homoclinic to centre manifolds of conservative PDEs , 2003 .

[7]  Satyanad Kichenassamy Breather Solutions of the Nonlinear Wave Equation , 2017, 1709.07787.

[8]  A. R. Bishop,et al.  Solitons in condensed matter: A paradigm , 1980 .

[9]  Guido Schneider,et al.  The validity of modulation equations for extended systems with cubic nonlinearities , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  J. Schrieffer,et al.  Fractionally Charged Excitations in Charge-Density-Wave Systems with Commensurability 3 , 1981 .

[11]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[12]  S. Aubry,et al.  Breathers in nonlinear lattices: existence, linear stability and quantization , 1997 .

[13]  A. Kudryavtsev,et al.  Solitons and their interactions in classical field theory , 1997 .

[14]  P. Kevrekidis,et al.  On the stability of multibreathers in Klein–Gordon chains , 2009, 0902.3990.

[15]  T. Sugiyama Kink-Antikink Collisions in the Two-Dimensional φ4 Model , 1979 .

[16]  R. MacKay,et al.  Existence and stability of 3-site breathers in a triangular lattice , 2005 .

[17]  M. Cirillo,et al.  Mechanical analog studies of a perturbed sine-Gordon equation , 1981 .

[18]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[19]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[20]  V. Koukouloyannis Non-Existence of phase-shift breathers in one-dimensional Klein-Gordon lattices with nearest-neighbor interactions , 2012, 1204.4929.

[21]  Robert S. MacKay,et al.  Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators , 1994 .

[22]  David K. Campbell,et al.  Resonance structure in kink-antikink interactions in φ4 theory , 1983 .

[23]  P. Kevrekidis,et al.  $\mathcal{PT}$-symmetric dimer of coupled nonlinear oscillators , 2013, 1307.6047.

[24]  Michel Peyrard,et al.  Solitary wave collisions revisited , 1986 .

[25]  V. Wadhawan Introduction to Ferroic Materials , 2000 .

[26]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[27]  Z. Musslimani,et al.  Optical Solitons in PT Periodic Potentials , 2008 .

[28]  Nick Lazarides,et al.  Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials. , 2012, Physical review letters.

[29]  和達 三樹 M. J. Ablowitz and H. Segur: Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, 1981, x+425ページ, 23.5×16.5cm, $54.40 (SIAM Studies in Applied Mathematics). , 1982 .

[30]  P. Kevrekidis,et al.  Stability of waves in discrete systems , 2001 .

[31]  S. Aubry,et al.  Spatially inhomogeneous time-periodic propagating waves in anharmonic systems , 1997 .

[32]  F. Romero,et al.  Stability of non-time-reversible phonobreathers , 2010, 1011.5450.

[33]  Capture and release of traveling intrinsic localized mode in coupled cantilever array. , 2009, Chaos.

[34]  U. Peschel,et al.  Hybrid discrete solitons. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  R. S. Ward,et al.  Kink dynamics in a novel discrete sine-Gordon system , 1994, patt-sol/9911008.

[36]  John P. Boyd A numerical calculation of a weakly non-local solitary wave: the φ 4 breather , 1990 .

[37]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[38]  Page,et al.  Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems. , 1990, Physical review. B, Condensed matter.

[39]  R. Matzner,et al.  Fractal structure in the scalar λ ( φ 2 − 1 ) 2 theory , 1991 .

[40]  C. Bender,et al.  PT-symmetric quantum mechanics , 1998, 2312.17386.

[41]  Chen,et al.  Breather Mobility in Discrete phi4 Nonlinear Lattices. , 1996, Physical review letters.

[42]  M. Kruskal,et al.  Nonexistence of small-amplitude breather solutions in phi4 theory. , 1987, Physical review letters.

[43]  F. Esposito,et al.  Theory and applications of the sine-gordon equation , 1971 .

[44]  J. Denzler Nonpersistence of breather families for the perturbed sine Gordon equation , 1993 .

[45]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[46]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[47]  P. Kevrekidis,et al.  Multibreathers in Klein–Gordon chains with interactions beyond nearest neighbors , 2012, 1204.5496.

[48]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[49]  Panayotis G. Kevrekidis,et al.  Multibreather and Vortex Breather stability in Klein-Gordon Lattices: Equivalence between Two Different Approaches , 2011, Int. J. Bifurc. Chaos.

[50]  Bypassing the bandwidth theorem with PT symmetry , 2012, 1205.1847.

[51]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[52]  P. Kevrekidis,et al.  On the Spectral Stability of Kinks in Some PT ‐Symmetric Variants of the Classical Klein–Gordon Field Theories , 2014, Studies in Applied Mathematics.

[53]  G. Schneider,et al.  Detection of standing pulses in periodic media by pulse interaction , 2012 .

[54]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model: Concepts, Methods, and Applications , 2004 .

[55]  Roy H. Goodman,et al.  Chaotic scattering in solitary wave interactions: a singular iterated-map description. , 2007, Chaos.

[56]  Second order nonpersistence of the sine Gordon breather under an exceptional perturbation , 1995 .

[57]  G. Schneider,et al.  Separation of internal and interaction dynamics for NLS-described wave packets with different carrier waves , 2008 .

[58]  P. Kevrekidis,et al.  Discrete breathers in a forced-damped array of coupled pendula: modeling, computation, and experiment. , 2009, Physical review letters.

[59]  Guido Schneider,et al.  Modulating Pulse Solutions for a Class¶of Nonlinear Wave Equations , 2001 .

[60]  R. Craster,et al.  Being stable and discrete , 2000 .

[61]  G. Schneider,et al.  Breather Solutions in Periodic Media , 2011 .

[62]  H. McKean,et al.  The rigidity of sine‐gordon breathers , 1994 .

[63]  Tsampikos Kottos,et al.  Experimental study of active LRC circuits with PT symmetries , 2011, 1109.2913.

[64]  G. Kopidakis,et al.  Breather–phonon resonances in finite-size lattices: ‘phantom breathers’? , 2002 .

[65]  Panayotis G. Kevrekidis,et al.  Integrability revisited: a necessary condition , 2001 .

[66]  P. Kevrekidis,et al.  Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Richard Haberman,et al.  Kink-Antikink Collisions in the φ4 Equation: The n-Bounce Resonance and the Separatrix Map , 2005, SIAM J. Appl. Dyn. Syst..

[68]  Mobility and reactivity of discrete breathers , 1997, cond-mat/9712046.