The tail of the stationary distribution of a random coefficient AR(q) model

We investigate a stationary random cofficient autoregressive process. Using renewal type arguments tailor-made for such processes we show that the stationary distribution has a power-law tail. When the model is normal, we show that the model is in distribution equivalent to an autoregressive process with ARCH errors. Hence we obtain the tail behaviour of any such model of arbitrary order.

[1]  Harry Kesten,et al.  Renewal Theory for Functionals of a Markov Chain with General State Space , 1974 .

[2]  T. Mikosch,et al.  Limit theory for the sample autocorrelations and extremes of a GARCH (1,1) process , 2000 .

[3]  Richard A. Davis,et al.  Regular variation of GARCH processes , 2002 .

[4]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[5]  W. D. Ray Stationary Stochastic Models , 1991 .

[6]  B. G. Quinn,et al.  Random Coefficient Autoregressive Models: An Introduction , 1982 .

[7]  C. Klüppelberg,et al.  The Tail of the Stationary Distribution of an Autoregressive Process with Arch(1) Errors , 2001 .

[8]  Paul D. Feigin,et al.  RANDOM COEFFICIENT AUTOREGRESSIVE PROCESSES:A MARKOV CHAIN ANALYSIS OF STATIONARITY AND FINITENESS OF MOMENTS , 1985 .

[9]  C. Klüppelberg,et al.  Renewal Theory for Functionals of a Markov Chain with Compact State Space , 2003 .

[10]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[11]  E. L. Page Théorèmes de renouvellement pour les produits de matrices aléatoires Équations aux différences aléatoires , 1983 .

[12]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[13]  Tail Behaviour of the Stationary Density of General Non-Linear Autoregressive Processes of Order One , 1993 .

[14]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[15]  Barry G. Quinn,et al.  Random Coefficient Autoregressive Models: An Introduction. , 1984 .

[16]  Sidney I. Resnick,et al.  Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes , 1989 .

[17]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[18]  C. Goldie IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .

[19]  C. Goldie,et al.  Stability of perpetuities , 2000 .

[20]  P. Franken,et al.  Stationary Stochastic Models. , 1992 .