Generating Convex Polynomial Inequalities for Mixed 0–1 Programs

We develop a method for generating valid convex quadratic inequalities for mixed0–1 convex programs. We also show how these inequalities can be generated in the linear case by defining cut generation problems using a projection cone. The basic results for quadratic inequalities are extended to generate convex polynomial inequalities.

[1]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[2]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[3]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[4]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[5]  E. Balas,et al.  Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .

[6]  Franz Rendl,et al.  Nonpolyhedral Relaxations of Graph-Bisection Problems , 1995, SIAM J. Optim..

[7]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[8]  Hector A. Rosales-Macedo Nonlinear Programming: Theory and Algorithms (2nd Edition) , 1993 .

[9]  Egon Balas,et al.  Polyhedral methods for the maximum clique problem , 1994, Cliques, Coloring, and Satisfiability.

[10]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[11]  Masakazu Kojima,et al.  Semidefinite Programming Relaxation for Nonconvex Quadratic Programs , 1997, J. Glob. Optim..

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[14]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[15]  Sanjay Mehrotra,et al.  A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..

[16]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[17]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.