The generating groups of geometrically uniform spherical signal sets

An [M, n] spherical signal set is a collectionℒ ofM unit-norm vectors in the Euclideann-dimensional space ℛn. Itsconfiguration matrixC is the matrix of the scalar products between pairs of vectors.ℒ isgeometrically uniform if, given any two vectors xi, xjεℒ there exists an isometry that transforms xi to xj while leavingℒ invariant. Agenerating group of ℒ is a group of isometries of ℛn that transform any given vector ofℒ into each of the vectors inℒ while leavingℒ invariant. In this paper we characterize the configuration matrix of a geometrically uniform spherical signal set and we show how its generating groups can be obtained.

[1]  Ingemar Ingemarsson Commutative group codes for the Gaussian channel , 1973, IEEE Trans. Inf. Theory.

[2]  I. Blake,et al.  Group Codes for the Gaussian Channel , 1975 .

[3]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[4]  R. Kochendörffer,et al.  Group Theory , 1970 .

[5]  Ian F. Blake,et al.  The mathematical theory of coding , 1975 .

[6]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[7]  Ian F. Blake Configuration matrices of group codes , 1974, IEEE Trans. Inf. Theory.

[8]  E. Biglieri,et al.  Cyclic-group codes for the Gaussian channel , 1976 .

[9]  Hans-Andrea Loeliger,et al.  Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.

[10]  D. Slepian Group codes for the Gaussian channel , 1968 .

[11]  Ezio Biglieri,et al.  Cyclic-group codes for the Gaussian channel (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[12]  Ezio Biglieri,et al.  On the existence of group codes for the Gaussian channel , 1972, IEEE Trans. Inf. Theory.

[13]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[14]  Ezio Biglieri,et al.  Multidimensional modulation and coding for band-limited digital channels , 1988, IEEE Trans. Inf. Theory.

[15]  David S. Slepian On neighbor distances and symmetry in group codes (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[16]  Hans-Andrea Loeliger,et al.  Linear Codes Over Groups And New Slepian-type Signal Sets , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.