An E-shape broadband piezoelectric energy harvester induced by magnets

We describe in this work a broadband magnetic E-shape piezoelectric energy harvester with wide frequency bandwidth. We develop first a nonlinear electromechanical model of the harvester based on the Hamilton variation principle that simulates the effect of the nonlinear magnetic restoring force at different spacing distances. The model is used to identify the distances existing between two different magnets that enable the system to perform with a specific nonlinearity. The performance of the E-shape piezoelectric energy harvester is also investigated through experiments, with E-shape energy harvesters at different spacing distances tested under several base acceleration excitations. We observe that the frequency domain output voltage of the system shows a general excellent controllable performance, with a widening of the frequency bandwidth. The half-power bandwidth of the linear energy harvester for a distance of 25 mm is 0.8 Hz only, which can be expanded to 2.67 Hz for the larger distance of 11 mm between magnets. The energy harvester presented in this work shows promising performances for broad-spectrum vibration excitations compared to conventional cantilever piezoelectric energy harvester systems with a tip mass.

[1]  Mohammed F. Daqaq,et al.  Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters , 2011 .

[2]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[3]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[4]  Huan Xue,et al.  Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[6]  A. F. Arrieta,et al.  Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites , 2013 .

[7]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[8]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[9]  Fuhong Dai,et al.  Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate , 2017 .

[10]  D.P. Arnold,et al.  Review of Microscale Magnetic Power Generation , 2007, IEEE Transactions on Magnetics.

[11]  Chee Kiong Soh,et al.  Improving functionality of vibration energy harvesters using magnets , 2012 .

[12]  Reza Ramezanpour,et al.  A vibration-based energy harvester suitable for low-frequency, high-amplitude environments: Theoretical and experimental investigations , 2016 .

[13]  Philip Bonello,et al.  Experimental validation of a distributed parameter piezoelectric bimorph cantilever energy harvester , 2010 .

[14]  Jens Twiefel,et al.  Survey on broadband techniques for vibration energy harvesting , 2013 .

[15]  Xin Lan,et al.  Dynamic responses of SMA-epoxy composites and application for piezoelectric energy harvesting , 2016 .

[16]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[17]  Xiaoning Jiang,et al.  Energy harvesting using a PZT ceramic multilayer stack , 2013 .

[18]  Pilkee Kim,et al.  A multi-stable energy harvester: Dynamic modeling and bifurcation analysis , 2014 .

[19]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[20]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[21]  Duy Son Nguyen,et al.  Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide- and Narrowband Excitation , 2010, Journal of Microelectromechanical Systems.

[22]  Yaowen Yang,et al.  A nonlinear piezoelectric energy harvester with magnetic oscillator , 2012 .

[23]  I. Kovacic,et al.  Potential benefits of a non-linear stiffness in an energy harvesting device , 2010 .

[24]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[25]  P.A.A. Laura,et al.  A note on the vibrations of a clamped-free beam with a mass at the free end , 1974 .

[26]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[27]  Jean W. Zu,et al.  Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester , 2014 .

[28]  Junyi Cao,et al.  Broadband tristable energy harvester: Modeling and experiment verification , 2014 .

[29]  D. Inman,et al.  A piezomagnetoelastic structure for broadband vibration energy harvesting , 2009 .

[30]  Abdessattar Abdelkefi,et al.  Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters , 2016 .

[31]  Ahmad Paknejad,et al.  Analytical solution of piezoelectric energy harvester patch for various thin multilayer composite beams , 2016 .

[32]  Jan R. Wright,et al.  Design of a multiresonant beam for broadband piezoelectric energy harvesting , 2010 .

[33]  H. A. Kim,et al.  Static and dynamic analysis of bistable piezoelectric- composite plates for energy harvesting , 2012 .

[34]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[35]  Bernard H. Stark,et al.  MEMS electrostatic micropower generator for low frequency operation , 2004 .

[36]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[37]  Yiming Liu,et al.  Single crystal PMN-PT/Epoxy 1-3 composite for energy-harvesting application , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[38]  K. W. Wang,et al.  Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics , 2014 .

[39]  Marco Ferrari,et al.  A single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations ☆ , 2011 .

[40]  K. W. Wang,et al.  Bistable energy harvesting enhancement with an auxiliary linear oscillator , 2013 .

[41]  Bruno Ando,et al.  Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters , 2009 .

[42]  S. M. Shahruz,et al.  Design of mechanical band-pass filters with large frequency bands for energy scavenging , 2006 .

[43]  Norman M. Wereley,et al.  Energy Harvesting Devices Using Macro-fiber Composite Materials , 2010 .

[44]  J. Dugundji,et al.  Modeling and experimental verification of proof mass effects on vibration energy harvester performance , 2010 .