Chemical Reactions on Clays

Layer aluminosilicates catalyze reactions in numerous ways. They stabilize high-energy intermediates. They can store energy in their lattice structures and can release it in the form of chemical energy. They can catalyze redox reactions and can serve as photocatalytic devices. They often exhibit high surface acidity. Organic reactions that are catalyzed by the agency of days are reviewed. The role of clays in prebiotic chemistry is also examined.

[1]  S. Hünig,et al.  Synthesen mit Enaminen, I. Acylierung mit Carbonsäurechloriden , 1957 .

[2]  P. Laszlo,et al.  Easy formation of diels-alder cycloadducts between furans and α,β-unsaturated aldehydes and ketones at normal pressure. , 1984 .

[3]  G. Mcvicker,et al.  Hydride transfer and olefin isomerization as tools to characterize liquid and solid acids , 1986 .

[4]  W. G. Dauben,et al.  Organic reactions at high pressure. Cycloadditions with furans , 1976 .

[5]  P. Nieuwenhuizen,et al.  The hidden dimensions of spacetime , 1985 .

[6]  S. Hünig,et al.  Synthesen mit Enaminen, VII. Addition von Isocyanaten und Isothiocyanaten an Enamine , 1962 .

[7]  J. Rupert Electron spin resonance spectra of interlamellar copper(II)-arene complexes on montmorillonite , 1973 .

[8]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[9]  P. Albrecht,et al.  Efficient synthesis of rearranged cholest-13(17)-enes catalysed by montmorillonite-clay , 1985 .

[10]  Catalysis of organic reactions by inorganic solids , 1986 .

[11]  D. Curtin,et al.  The para Claisen Rearrangement: Rearrangement of 6-Allyl-2,6-dimethyl-2,4-cyclohexadienone1 , 1957 .

[12]  L. Hammett,et al.  A SERIES OF SIMPLE BASIC INDICATORS. I. THE ACIDITY FUNCTIONS OF MIXTURES OF SULFURIC AND PERCHLORIC ACIDS WITH WATER1 , 1932 .

[13]  A. Katchalsky,et al.  Prebiotic Synthesis of Polypeptides by Heterogeneous Polycondensation of Amino-acid Adenylates , 1970, Nature.

[14]  J. J. Fripiat,et al.  Clays as Catalysts for Natural Processes , 1974 .

[15]  P. Isaacson,et al.  Sorption and transformation of phenols on clay surfaces: effect of exchangeable cations , 1983, Clay Minerals.

[16]  G. Hodgson,et al.  Prebiotic porphyrin genesis: porphyrins from electric discharge in methane, ammonia, and water vapor. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. J. Bellville,et al.  Cation-radical catalyzed Diels-Alder reaction , 1981 .

[18]  N. Lahav,et al.  Characterization of Dehydration-Induced Luminescence of Kaolinite , 1985, Clays and clay minerals.

[19]  M. M. Mortland,et al.  Surface Acidity of Smectites in Relation to Hydration, Exchangeable Cation, and Structure , 1968 .

[20]  J. Rishpon,et al.  Quantum-chemical modeling of smectite clays , 1982 .

[21]  J. D. Bernal,et al.  The Physical Basis of Life , 1949 .

[22]  G. Hodgson,et al.  Porphyrin Abiogenesis from Pyrrole and Formaldehyde under Simulated Geochemical Conditions , 1967, Nature.

[23]  J. M. Adams,et al.  Catalyzed reactions of organic molecules at clay surfaces: Ester breakdown, dimerizations, and lactonizations , 1982 .

[24]  D. B. Fenn,et al.  The Chemisorption of Anisole on Cu(II) Hectorite , 1973 .

[25]  S. Boyd,et al.  Dioxin radical formation and polymerization on Cu(II)-smectite , 1985, Nature.

[26]  J. Adams,et al.  Reactions of Alcohols with Alkenes over an Aluminum-Exchanged Montmorillonite , 1983 .

[27]  C. C. Addison,et al.  Structural aspects of co-ordinated nitrate groups , 1971 .

[28]  S. Hardt Rates of diffusion controlled reactions in one, two and three dimensions. , 1979, Biophysical chemistry.

[29]  P. L. Hall,et al.  Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates , 1974 .

[30]  N. Lahav,et al.  Dehydration-induced luminescence in clay minerals , 1981, Nature.

[31]  T. Pinnavaia,et al.  Interlamellar metal complexes on layer silicates. I. Copper(II)-arene complexes on montmorillonite , 1971 .

[32]  A. Weiss,et al.  Replication and Evolution in Inorganic Systems , 1981 .

[33]  T. Pinnavaia,et al.  Intercalated Clay Catalysts , 1983, Science.

[34]  P. Laszlo,et al.  Catalysis of the cyclohexadienone-phenol rearrangement by a Lewis-acidic clay system , 1986 .

[35]  P. Laszlo,et al.  Direct Clay‐Catalyzed Friedel‐Crafts Arylation and Chlorination of the Hydrocarbon Adamantane , 1985 .

[36]  J. Thomas,et al.  Organic reactions in a clay microenvironment , 1983, Clay Minerals.

[37]  N. Lahav,et al.  Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. , 1978, Science.

[38]  M. M. Mortland,et al.  Benzene Complexes with Copper(II)montmorillonite , 1969, Science.

[39]  B. Miller Too many rearrangements of cyclohexadienones , 1975 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  P. G. Gassman,et al.  Distinction between aminium cation radical and protic acid catalyzed Diels-Alder reactions , 1984 .

[42]  G. Pólya Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .

[43]  P. Laszlo,et al.  Nitration of estrone into 2-nitroestrone by clay-supported ferric nitrate , 1983 .

[44]  T. Pinnavaia,et al.  Porphyrin intercalation in mica-type silicates , 1978 .

[45]  P. Laszlo,et al.  Catalysis of the diels-alder reaction in the presence of clays , 1984 .

[46]  O. Zaalberg A Simple Method for detecting Single Antibody-forming Cells , 1964, Nature.

[47]  L. Coyne,et al.  Luminescence induced by dehydration of kaolin - Association with electron-spin-active centers and with surface activity for dehydration-polymerization of glycine , 1983 .

[48]  D. J. Bellville,et al.  Cation radical Diels-Alder reactions of electron-rich dienophiles , 1983 .