Dependence measures bounding the exploration bias for general measurements
暂无分享,去创建一个
[1] Jacob Ziv,et al. On functionals satisfying a data-processing theorem , 1973, IEEE Trans. Inf. Theory.
[2] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[3] Sergio Verdú,et al. Cumulant generating function of codeword lengths in optimal lossless compression , 2014, 2014 IEEE International Symposium on Information Theory.
[4] Tsachy Weissman,et al. Information Measures: The Curious Case of the Binary Alphabet , 2014, IEEE Transactions on Information Theory.
[5] Amos Lapidoth,et al. Two Measures of Dependence , 2016, 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE).
[6] Mark D. Reid,et al. Tighter Variational Representations of f-Divergences via Restriction to Probability Measures , 2012, ICML.
[7] R. Sibson. Information radius , 1969 .
[8] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[9] Peter E. Latham,et al. Mutual Information , 2006 .
[10] Lech Maligranda,et al. Amemiya norm equals Orlicz norm in general , 2000 .
[11] Paul Dupuis,et al. Robust Bounds on Risk-Sensitive Functionals via Rényi Divergence , 2013, SIAM/ASA J. Uncertain. Quantification.
[12] L. Schmetterer. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .
[13] S. M. Ali,et al. A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .
[14] Gustavo L. Gilardoni. On a Gel'fand-Yaglom-Peres theorem for f-divergences , 2009, ArXiv.
[15] James Zou,et al. Controlling Bias in Adaptive Data Analysis Using Information Theory , 2015, AISTATS.
[16] Martin J. Wainwright,et al. Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization , 2008, IEEE Transactions on Information Theory.