Bio-Inspired Fast Actuation by Mechanical Instability of Thermoresponding Hydrogel Structures

[1]  A. Chilkoti,et al.  Bioinspired Reversibly Cross‐linked Hydrogels Comprising Polypeptide Micelles Exhibit Enhanced Mechanical Properties , 2015 .

[2]  Honglei Guo,et al.  Free Reprocessability of Tough and Self-Healing Hydrogels Based on Polyion Complex. , 2015, ACS macro letters.

[3]  E. Palleau,et al.  Electro-actuated hydrogel walkers with dual responsive legs. , 2014, Soft matter.

[4]  Jian Ping Gong,et al.  Why are double network hydrogels so tough , 2010 .

[5]  Andrij Pich,et al.  Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. , 2007, Small.

[6]  Gordana Vunjak-Novakovic,et al.  Biomimetic platforms for human stem cell research. , 2011, Cell stem cell.

[7]  Il-Kwon Oh,et al.  Snap-through dynamics of buckled IPMC actuator , 2010 .

[8]  L. Ionov Biomimetic Hydrogel‐Based Actuating Systems , 2013 .

[9]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[10]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[11]  Wei Wang,et al.  Nano-structured smart hydrogels with rapid response and high elasticity , 2013, Nature Communications.

[12]  J. Greener,et al.  Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses , 2013, Nature Communications.

[13]  T. Kurokawa,et al.  Determination of fracture energy of high strength double network hydrogels. , 2005, The journal of physical chemistry. B.

[14]  Michel M. Maharbiz,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Transpiration Actuation: the Design, Fabrication and Characterization of Biomimetic Microactuators Driven by the Surface Tension of Water , 2022 .

[15]  Shao-Tang Sun,et al.  Phase transitions in ionic gels , 1980 .

[16]  Z. Suo,et al.  Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load , 2009 .

[17]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[18]  Zhigang Suo,et al.  Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. , 2013, Biomaterials.

[19]  Jiaming Zhuang,et al.  Multi-stimuli responsive macromolecules and their assemblies. , 2013, Chemical Society reviews.

[20]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[21]  Masaki Takata,et al.  An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets , 2014, Nature.

[22]  R. Yoshida,et al.  Self‐Walking Gel , 2007 .

[23]  Z. Suo,et al.  A theory of coupled diffusion and large deformation in polymeric gels , 2008 .

[24]  D. Hodick,et al.  On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis) , 1989, Planta.

[25]  R. Rivlin,et al.  Rupture of rubber. I. Characteristic energy for tearing , 1953 .

[26]  T. Sun,et al.  Self-assembled structures of a semi-rigid polyanion in aqueous solutions and hydrogels , 2012, Science China Chemistry.

[27]  S. Qu,et al.  Electromechanical Bistable Behavior of a Novel Dielectric Elastomer Actuator , 2014 .

[28]  K. J. Hsia,et al.  Colloidal Particles that Rapidly Change Shape via Elastic Instabilities. , 2015, Small.

[29]  O. Ikkala,et al.  Thermoresponsive Nanocellulose Hydrogels with Tunable Mechanical Properties. , 2014, ACS macro letters.

[30]  Hong-Chao Zhang,et al.  Shape memory polymer snap-fits for active disassembly , 2011 .

[31]  Howon Lee,et al.  First jump of microgel; actuation speed enhancement by elastic instability , 2010, 1008.4078.

[32]  Yuchuan Zhang,et al.  Instability pathways of hydrogel microlenses under concentrated loadings , 2009 .

[33]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[34]  F. Lloyd THE MECHANISM OF THE WATER TIGHT DOOR OF THE UTRICULARIA TRAP. , 1929, Plant physiology.

[35]  Tiefeng Li,et al.  Supramolecular Lego Assembly Towards Three‐Dimensional Multi‐Responsive Hydrogels , 2014, Advanced materials.

[36]  Zhihong Nie,et al.  From nature to synthetic systems: shape transformation in soft materials. , 2014, Journal of materials chemistry. B.

[37]  Hon Fai Chan,et al.  3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures , 2015, Advanced materials.

[38]  Z. Suo,et al.  Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels , 2011 .

[39]  C. Keplinger,et al.  Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability , 2013 .

[40]  Jinxiong Zhou,et al.  Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. , 2015, ACS applied materials & interfaces.

[41]  Y. Takashima,et al.  Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions , 2012, Nature Communications.

[42]  K. Wan,et al.  Deformation of a Convex Hydrogel Shell by Parallel Plate and Central Compression , 2012 .

[43]  Honglei Guo,et al.  Crack Blunting and Advancing Behaviors of Tough and Self-healing Polyampholyte Hydrogel , 2014 .

[44]  Thomas Speck,et al.  Ultra-fast underwater suction traps , 2011, Proceedings of the Royal Society B: Biological Sciences.

[45]  Zhigang Suo,et al.  Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. , 2013, ACS applied materials & interfaces.

[46]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[47]  Howon Lee,et al.  Solvent-driven polymeric micro beam device , 2010 .

[48]  T. Aida,et al.  Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. , 2015, Nature materials.

[49]  Toyoichi Tanaka,et al.  Phase transition in polymer gels induced by visible light , 1990, Nature.

[50]  L. P. Tan,et al.  Bio-inspired micropatterned hydrogel to direct and deconstruct hierarchical processing of geometry-force signals by human mesenchymal stem cells during smooth muscle cell differentiation , 2015 .

[51]  Daniel R. King,et al.  Extremely tough composites from fabric reinforced polyampholyte hydrogels , 2015 .

[52]  T. Kurokawa,et al.  Hydrogels with cylindrically symmetric structure at macroscopic scale by self-assembly of semi-rigid polyion complex. , 2010, Journal of the American Chemical Society.