Zinc finger proteins: what we know and what we would like to know

[1]  T. Morgan,et al.  The third-chromosome group of mutant characters of Drosophila melanogaster , 1923 .

[2]  H. L. Carson,et al.  The Genetics and Biology of Drosophila , 1976, Heredity.

[3]  U. Francke,et al.  Chromosomal imbalance in the Aniridia-Wilms' tumor association: 11p interstitial deletion. , 1978, Pediatrics.

[4]  U. Francke,et al.  Aniridia-Wilms' tumor association: evidence for specific deletion of 11p13. , 1979, Cytogenetics and cell genetics.

[5]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.

[6]  D. Engelke,et al.  Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes , 1980, Cell.

[7]  R. Roeder,et al.  Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation , 1980, Cell.

[8]  M. Wegnez,et al.  Biochemical Research on oogenesis. Composition of the 42-S storage particles of Xenopus laevix oocytes. , 1980, European journal of biochemistry.

[9]  D. Engelke,et al.  The binding of a transcription factor to deletion mutants of a 5S ribosomal RNA gene , 1981, Cell.

[10]  Donald D. Brown,et al.  Contact points between a positive transcription factor and the Xenopus 5S RNA gene , 1982, Cell.

[11]  D. Bogenhagen,et al.  Stable transcription complexes of Xenopus 5S RNA genes: A means to maintain the differentiated state , 1982, Cell.

[12]  L. Wolpert,et al.  Local application of retinoic acid to the limb bond mimics the action of the polarizing region , 1982, Nature.

[13]  A. Lassar,et al.  Transcription of class III genes: formation of preinitiation complexes. , 1983, Science.

[14]  V. Erdmann,et al.  Isolation and characterization of a 7 S RNP particle from mature Xenopus laevis oocytes , 1983, FEBS letters.

[15]  R. Tjian,et al.  The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter , 1983, Cell.

[16]  Brent H. Cochran,et al.  Molecular cloning of gene sequences regulated by platelet-derived growth factor , 1983, Cell.

[17]  R. Tjian,et al.  Multiple specific contacts between a mammalian transcription factor and its cognate promoters , 1984, Nature.

[18]  T. Pieler,et al.  Structural requirements for the interaction of 5S rRNA with the eukaryotic transcription factor IIIA. , 1984, Nucleic acids research.

[19]  Donald D. Brown The role of stable complexes that repress and activate eucaryotic genes , 1984, Cell.

[20]  J. Hanas,et al.  Binding of Xenopus transcription factor A to 5S RNA and to single stranded DNA. , 1984, Nucleic acids research.

[21]  I. Jackson,et al.  Domains of the positive transcription factor specific for the Xenopus 5S RNA gene , 1984, Cell.

[22]  C. Nüsslein-Volhard,et al.  Krüppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. , 1984, Developmental biology.

[23]  R. Roeder,et al.  Xenopus 5S gene transcription factor, TFIIIA: Characterization of a cDNA clone and measurement of RNA levels throughout development , 1984, Cell.

[24]  J. Monroe,et al.  Molecular events in B cell activation. I. Signals required to stimulate G0 to G1 transition of resting B lymphocytes. , 1985, Journal of immunology.

[25]  Paul J. Romaniuk,et al.  Characterization of the RNA binding properties of transcription factor IIIA of Xenopus laevis oocytes. , 1985, Nucleic acids research.

[26]  Richard Treisman,et al.  Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences , 1985, Cell.

[27]  Robert Tjian,et al.  Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins , 1985, Nature.

[28]  P. Ingham,et al.  Transcription pattern of the Drosophila segmentation gene hairy , 1985, Nature.

[29]  M. Rosbash,et al.  Sequence and structure of the serendipity locus of Drosophila melanogaster. A densely transcribed region including a blastoderm-specific gene. , 1985, Journal of molecular biology.

[30]  P Argos,et al.  The primary structure of transcription factor TFIIIA has 12 consecutive repeats , 1985, FEBS letters.

[31]  H. Jäckle,et al.  Spatial and temporal patterns of Krüppel gene expression in early Drosophila embryos , 1985, Nature.

[32]  R. Tjian,et al.  Bidirectional SV40 transcription mediated by tandem Sp1 binding interactions. , 1985, Science.

[33]  R. Lehmann,et al.  A gap gene, hunchback, regulates the spatial expression of Ultrabithorax , 1986, Cell.

[34]  A. Klug,et al.  Mapping of the sites of protection on a 5 S RNA gene by the Xenopus transcription factor IIIA. A model for the interaction. , 1986, Journal of molecular biology.

[35]  Richard Treisman,et al.  Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors , 1986, Cell.

[36]  R. Lehmann,et al.  Cross-regulatory interactions among the gap genes of Drosophila , 1986, Nature.

[37]  C. Nüsslein-Volhard,et al.  Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid , 1986, Nature.

[38]  H. Jäckle,et al.  A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene , 1986, Cell.

[39]  H. Jäckle,et al.  Structural homology of the product of the Drosophila Krüppel gene with Xenopus transcription factor IIIA , 1986, Nature.

[40]  L. J. Korn,et al.  Structure of tbe gene for Xenopus transcription factor TMIIIA , 1986 .

[41]  H. Blumberg,et al.  Sequence homology of the yeast regulatory protein ADR1 with Xenopus transcription factor TFIIIA , 1986, Nature.

[42]  A. Klug,et al.  EXAFS study of the zinc-binding sites in the protein transcription factor IIIA , 1986, Nature.

[43]  R. Lehmann,et al.  hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. , 1987, Developmental biology.

[44]  Gregor Eichele,et al.  Identification and spatial distribution of retinoids in the developing chick limb bud , 1987, Nature.

[45]  J. Trent,et al.  Identification of an amplified, highly expressed gene in a human glioma. , 1987, Science.

[46]  Sean B. Carroll,et al.  The segmentation and homeotic gene network in early Drosophila development , 1987, Cell.

[47]  E Seifert,et al.  Analysis of Krüppel protein distribution during early Drosophila development reveals posttranscriptional regulation , 1987, Cell.

[48]  L. Brown,et al.  The sex-determining region of the human Y chromosome encodes a finger protein , 1987, Cell.

[49]  R. Lehmann,et al.  Determination of anteroposterior polarity in Drosophila. , 1987, Science.

[50]  H. Jäckle,et al.  Pole region-dependent repression of the Drosophila gap gene Krüppel by maternal gene products , 1987, Cell.

[51]  Robert Tjian,et al.  Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain , 1987, Cell.

[52]  R. Roeder,et al.  The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing , 1987, Cell.

[53]  J. L. Boulay,et al.  The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers , 1987, Nature.

[54]  A. Geiser,et al.  Introduction of a normal human chromosome 11 into a Wilms' tumor cell line controls its tumorigenic expression. , 1987, Science.

[55]  P. Gruss,et al.  A multigene family encoding several “finger” structures is present and differentially active in mammalian genomes , 1987, Cell.

[56]  Bert Vogelstein,et al.  The GLI gene is a member of the Kruppel family of zinc finger proteins , 1988, Nature.

[57]  P. Ingham The molecular genetics of embryonic pattern formation in Drosophila , 1988, Nature.

[58]  R. Tjian,et al.  Analysis of Sp1 in vivo reveals mutiple transcriptional domains, including a novel glutamine-rich activation motif , 1988, Cell.

[59]  E. Larsson,et al.  Absence of expression of a human endogenous retrovirus is correlated with choriocarcinoma , 1988, International journal of cancer.

[60]  Eileen D. Adamson,et al.  A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization , 1988, Cell.

[61]  Diethard Tautz,et al.  Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres , 1988, Nature.

[62]  R. Evans,et al.  The steroid and thyroid hormone receptor superfamily. , 1988, Science.

[63]  N. Copeland,et al.  Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines , 1988, Cell.

[64]  L. Hood,et al.  Zinc-dependent structure of a single-finger domain of yeast ADR1. , 1988, Science.

[65]  E. Robertis,et al.  A gradient of homeodomain protein in developing forelimbs of Xenopus and mouse embryos , 1988, Cell.

[66]  R. Tjian,et al.  O-glycosylation of eukaryotic transcription factors: Implications for mechanisms of transcriptional regulation , 1988, Cell.

[67]  D. Wilkinson,et al.  Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse , 1989, Nature.

[68]  Gene regulation by steroid hormones , 1989, Cell.

[69]  E. Mitrani,et al.  Retinoic acid inhibits growth in agarose of early chick embryonic cells and may be involved in regulation of axis formation. , 1989, Development.

[70]  P E Wright,et al.  Three-dimensional solution structure of a single zinc finger DNA-binding domain. , 1989, Science.

[71]  R. Tjian,et al.  Synergistic activation by the glutamine-rich domains of human transcription factor Sp1 , 1989, Cell.

[72]  Diethard Tautz,et al.  Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene , 1989, Nature.

[73]  T. El-Baradi,et al.  Second-order repeats in Xenopus laevis finger proteins. , 1989, Journal of molecular biology.

[74]  Ken W. Y. Cho,et al.  Interference with function of a homeobox gene in Xenopus embryos produces malformations of the anterior spinal cord , 1989, Cell.

[75]  P. Lemaire,et al.  Structure, chromosome mapping and regulation of the mouse zinc-finger gene Krox-24; evidence for a common regulatory pathway for immediate-early serum-response genes. , 1989, Gene.

[76]  A. Vincent,et al.  Serendipity delta, a Drosophila zinc finger protein present in embryonic nuclei at the onset of zygotic gene transcription. , 1989, Developmental biology.

[77]  Claude Desplan,et al.  The products of the Drosophila gap genes hunchback and Krüppel bind to the hunchback promoters , 1989, Nature.

[78]  R. Balling,et al.  Structure, expression and chromosomal localization of Zfp-1, a murine zinc finger protein gene. , 1989, Nucleic acids research.

[79]  Ruth Lehmann,et al.  The Drosophila posterior-group gene nanos functions by repressing hunchback activity , 1989, Nature.

[80]  H. Jäckle,et al.  Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo , 1989, Nature.

[81]  Wolfgang Driever,et al.  The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo , 1989, Nature.

[82]  Tom Maniatis,et al.  Early and late periodic patterns of even skipped expression are controlled by distinct regulatory elements that respond to different spatial cues , 1989, Cell.

[83]  R. Krumlauf,et al.  Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain , 1989, Nature.

[84]  G. Struhl,et al.  Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos , 1989, Nature.

[85]  H. Hendriks,et al.  Retinoic acid causes an anteroposterior transformation in the developing central nervous system , 1989, Nature.

[86]  D. Melton,et al.  Involvement of the Xenopus homeobox gene Xhox3 in pattern formation along the anterior-posterior axis , 1989, Cell.

[87]  A. Look,et al.  Amplification of the gli gene in childhood sarcomas. , 1989, Cancer research.

[88]  Gerald M. Rubin,et al.  The glass gene encodes a zinc-finger protein required by Drosophila photoreceptor cells , 1989, Nature.

[89]  P. Romaniuk The role of highly conserved single-stranded nucleotides of Xenopus 5S RNA in the binding of transcription factor IIIA. , 1989, Biochemistry.

[90]  Denis Duboule,et al.  Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation , 1989, Nature.

[91]  Michael Levine,et al.  Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila , 1989, Nature.

[92]  A. McMahon,et al.  Developmental expression of the putative transcription factor Egr-1 suggests that Egr-1 and c-fos are coregulated in some tissues. , 1990, Development.

[93]  A. Poustka,et al.  Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping , 1990, Nature.

[94]  P. Spierer,et al.  Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein , 1990, Nature.

[95]  M Klingler,et al.  Two gap genes mediate maternal terminal pattern information in Drosophila. , 1990, Science.

[96]  Jonathan D. Licht,et al.  Drosophila Krüppel protein is a transcriptional represser , 1990, Nature.

[97]  W. McGinnis,et al.  Human Hox-4.2 and Drosophila Deformed encode similar regulatory specificities in Drosophila embryos and larvae , 1990, Cell.

[98]  V. Rangnekar,et al.  The serum and TPA responsive promoter and intron-exon structure of EGR2, a human early growth response gene encoding a zinc finger protein. , 1990, Nucleic acids research.

[99]  R. Balling,et al.  Variations of cervical vertebrate after expression of a Hox-1.1 transgene in mice , 1990, Cell.

[100]  A. Feinberg,et al.  Tissue, developmental, and tumor-specific expression of divergent transcripts in Wilms tumor. , 1990, Science.

[101]  Michael J. Pankratz,et al.  Gradients of Krüppel and knirps gene products direct pair-rule gene stripe patterning in the posterior region of the drosophila embryo , 1990, Cell.

[102]  H. Stunnenberg,et al.  The serum-inducible mouse gene Krox-24 encodes a sequence-specific transcriptional activator , 1990, Molecular and cellular biology.

[103]  A. Simeone,et al.  Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells , 1990, Nature.

[104]  E. Geiduschek,et al.  S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors , 1990, Cell.

[105]  M. Bennett,et al.  Identification in Xenopus of a structural homologue of the Drosophila gene snail. , 1990, Development.

[106]  K. Kinzler,et al.  The GLI gene encodes a nuclear protein which binds specific sequences in the human genome , 1990, Molecular and cellular biology.

[107]  Diethard Tautz,et al.  A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo , 1990, Nature.

[108]  K. Kinzler,et al.  GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity , 1990, Molecular and cellular biology.

[109]  K. Schughart,et al.  Mouse Hox-2.2 specifies thoracic segmental identity in Drosophila embryos and larvae , 1990, Cell.

[110]  David Lydall,et al.  The identification of a second cell cycle control on the HO promoter in yeast: Cell cycle regulation of SWI5 nuclear entry , 1990, Cell.

[111]  Robert Tjian,et al.  Mechanism of transcriptional activation by Sp1: Evidence for coactivators , 1990, Cell.

[112]  Donald D. Brown,et al.  A finger protein structurally similar to TFIIIA that binds exclusively to 5S RNA in Xenopus , 1990, Cell.

[113]  K. Shimotohno,et al.  Human proviral mRNAs down regulated in choriocarcinoma encode a zinc finger protein related to Krüppel , 1990, Molecular and cellular biology.

[114]  D. Housman,et al.  An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor , 1990, Cell.

[115]  H. Thiesen,et al.  Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. , 1990, Nucleic acids research.

[116]  T. Pieler,et al.  Protein-mediated nuclear export of RNA: 5S rRNA containing small RNPs in xenopus oocytes , 1990, Cell.

[117]  P. Romaniuk,et al.  The effects of disrupting 5S RNA helical structures on the binding of Xenopus transcription factor IIIA. , 1990, Nucleic acids research.

[118]  T. Curran,et al.  Binding of the Wilms' tumor locus zinc finger protein to the EGR-1 consensus sequence. , 1990, Science.

[119]  R. Tjian,et al.  GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase , 1990, Cell.

[120]  Mouse Zfx protein is similar to Zfy-2: each contains an acidic activating domain and 13 zinc fingers. , 1990, Molecular and cellular biology.

[121]  D. Housman,et al.  Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus , 1990, Cell.

[122]  D. Hamer,et al.  A gene that encodes a protein consisting solely of zinc finger domains is preferentially expressed in transformed mouse cells , 1990, Molecular and cellular biology.

[123]  A. Lumsden The cellular basis of segmentation in the developing hindbrain , 1990, Trends in Neurosciences.

[124]  S. Bryant,et al.  Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud , 1991, Nature.

[125]  Robert K. Davis,et al.  The myoD gene family: nodal point during specification of the muscle cell lineage. , 1991, Science.

[126]  A. Vincent,et al.  Genomic targets of the serendipity beta and delta zinc finger proteins and their respective DNA recognition sites. , 1991, The EMBO journal.

[127]  G. Rubin,et al.  The Drosophila zfh-1 and zfh-2 genes encode novel proteins containing both zinc-finger and homeodomain motifs , 1991, Mechanisms of Development.

[128]  D. Bogenhagen,et al.  Two zinc finger proteins from Xenopus laevis bind the same region of 5S RNA but with different nuclease protection patterns. , 1991, Nucleic acids research.

[129]  N. Pavletich,et al.  Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A , 1991, Science.

[130]  V. Sukhatme,et al.  Egr-1, a serum-inducible zinc finger protein, regulates transcription of the rat cardiac alpha-myosin heavy chain gene. , 1991, The Journal of biological chemistry.

[131]  D. Bogenhagen,et al.  The carboxyterminal zinc fingers of TFIIIA interact with the tip of helix V of 5S RNA in the 7S ribonucleoprotein particle. , 1991, Nucleic acids research.

[132]  K. Grzeschik,et al.  GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families , 1991, Nature.

[133]  T. Bouwmeester,et al.  Structure, expression and in vitro functional characterization of a novel RNA binding zinc finger protein from Xenopus. , 1991, The EMBO journal.

[134]  S. Noji,et al.  Retinoic acid induces polarizing activity but is unlikely to be a morphogen in the chick limb bud , 1991, Nature.

[135]  Toby J. Gibson,et al.  Base sequence discrimination by zinc-finger DNA-binding domains , 1991, Nature.

[136]  T. Bouwmeester,et al.  The maternal store of zinc finger protein encoding mRNAs in fully grown Xenopus oocytes is not required for early embryogenesis. , 1991, The EMBO journal.

[137]  K. Kinzler,et al.  The zinc finger protein GLI transforms primary cells in cooperation with adenovirus E1A , 1991, Molecular and cellular biology.

[138]  Bernard Jacq,et al.  The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs , 1991, Cell.