Simulating the extent of decay caused by Heterobasidion annosum s. l. in stems of Norway spruce

Heterobasidion annosum (FR.) BREF. sensu lato causes severe economic damage in stands of Norway spruce (Picea abies [L.] Karst). The primary damage is the deterioration of timber by decay. Secondary damage can be attributed to higher risks of windthrow and stem breakage, growth reduction of infected trees as well as higher machining and handling costs for decayed stems during grading and processing. Regardless of the importance of this pathogen there are very few software tools which support management decisions in red rot affected forests and none of them are parameterised with data from Central Europe. The present study aimed to develop a model which is able to spatially predict the extent and degree of decay in the stem as well as its effects on the growth of Norway spruce. This involves the integration of several sub-models into a tree growth simulator: (i) diameter of decay, (ii) height of decay, (iii) form of decay, (iv) degree of decay, and (v) feedback of the pathogen on treegrowth. The model is parameterised mainly from published data of other authors. The input for the time of infection of a tree is delivered from a separate model. A grading algorithm is used to evaluate the impact ofdifferentscenariosontherevenue ofinfected standsintypical standsofNorwayspruceinGermany. Thisintegratedsystem ofgrowthand red rot simulation is able to support management decisions on various levels and documents that if red rot is not taken into consideration in the affected stands, clear misinterpretations and thus inaccuracies will arise in the economic results from tree growth simulators. The need for further research was identified especially in model validation and the tree‐pathogen interaction. # 2007 Elsevier B.V. All rights reserved.

[1]  I. Chet,et al.  Effect of phenolic compounds and tannin on growth and laccase activity of Fomes annosus , 1981 .

[2]  P. Tamminen,et al.  Decay of spruce (Picea abies (L.) Karst.) in the Åland Islands , 1974 .

[3]  T. Pukkala,et al.  Modelling the spread of butt rot in a Picea abies stand in Finland to evaluate the profitability of stump protection against Heterobasidion annosum , 1998 .

[4]  C. S. Hodges,et al.  Heterobasidion annosum. Biology, Ecology, Impact and Control , 1999 .

[5]  B. B. Jørgensen,et al.  Modelling the incidence of butt rot in plantations of Piceaabies in Denmark , 1995 .

[6]  P. Graebner,et al.  Handbuch der Pflanzenkrankheiten. , 1955 .

[7]  J. Stenlid,et al.  Decreased volume growth of Picea abies in response to Heterobasidion annosum infection , 1997 .

[8]  T. Seifert,et al.  Volume interpolation of CT images from tree trunks. , 2005, Plant biology.

[9]  A. Isomäki,et al.  Consequences of injury caused by timber harvesting machines on the growth and decay of spruce (Picea abies (L.) Karst.). , 1974 .

[10]  Timo Pukkala,et al.  Optimizing the management of a Picea abies stand under risk of butt rot. , 2000 .

[11]  H. V. Aufsess,et al.  Untersuchungen über die Erreger von Stammfäulen in Fichtenbeständen , 1971, Forstwissenschaftliches Centralblatt.

[12]  Application and Evaluation of the Growth Simulator SILVA 2 . 2 for Forest Stands , Forest Estates and Large Regions , 2008 .

[13]  H. V. Aufsess,et al.  Ursachen und Ausmaß von Stammfäulen in Fichtenbeständen auf verschiedenen Standorten , 1973, Forstwissenschaftliches Centralblatt.

[14]  H. Pretzscha,et al.  The single tree-based stand simulator SILVA : construction , application and evaluation , 2002 .

[15]  E. Priesack,et al.  The plant's capacity in regulating resource demand. , 2005, Plant biology.

[16]  T. Pukkala,et al.  Modeling infection and spread of Heterobasidion annosum in even-aged Fennoscandian conifer stands , 2005 .

[17]  Franz Kogelmann Germany and Austria , 1927, Current History.

[18]  G. Bazzigher Infection studies with Heterobasidion annosum on young trees of Picea abies , 1986 .

[19]  L. Skoog,et al.  Historical aspects. , 2009, Monographs in clinical cytology.

[20]  T. Seifert,et al.  Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation. , 2005, Plant biology.

[21]  T. Seifert Integration von Holzqualität und Holzsortierung in behandlungssensitive Waldwachstumsmodelle , 2003 .

[22]  Hans Pretzsch,et al.  Recommendations for Standardized Documentation and Further Development of Forest Growth Simulators , 2002, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[23]  H. Courtois Einfluß von Rohdichte, Holzfeuchtigkeit und Jahrringbreite auf den Abbau des Nadelholzes durchFomes annosus (Fr.) Cke , 1970, Holz als Roh- und Werkstoff.

[24]  J. Pratt Fomes annosus butt-rot of Sitka spruce I. Observations on the development of butt-rot in individual trees and in stands. , 1979 .

[25]  L. Shain The Response of Sapwood of Norway Spruce to Infection by Fomes annosus , 1971 .

[26]  Suomen Metsätieteellisen,et al.  CONSEQUENCES OF INJURY CAUSED BY TIMBER HARVESTING MACHINES ON THE GROWTH AND DECAY OF SPRUCE ( PICEA ABIES ( L . ) KARST , 2007 .

[27]  J. Stenlid,et al.  Long-term reduction in the diameter growth of butt rot affected Norway spruce, Picea abies , 1995 .