Experimental Demonstration of an Electrostatic Orbital Angular Momentum Sorter for Electron Beams.

The component of orbital angular momentum (OAM) in the propagation direction is one of the fundamental quantities of an electron wave function that describes its rotational symmetry and spatial chirality. Here, we demonstrate experimentally an electrostatic sorter that can be used to analyze the OAM states of electron beams in a transmission electron microscope. The device achieves postselection or sorting of OAM states after electron-material interactions, thereby allowing the study of new material properties such as the magnetic states of atoms. The required electron-optical configuration is achieved by using microelectromechanical systems technology and focused ion beam milling to control the electron phase electrostatically with a lateral resolution of 50 nm. An OAM resolution of 1.5ℏ is realized in tests on controlled electron vortex beams, with the perspective of reaching an optimal OAM resolution of 1ℏ in the near future.

[1]  J. Idrobo A new resolution quest in electron microscopy , 2020, Nature Reviews Materials.

[2]  Michael C. Cao,et al.  Transferring orbital angular momentum to an electron beam reveals toroidal and chiral order , 2020, Physical Review B.

[3]  E. Karimi,et al.  Combination of Electron Energy-loss Spectroscopy and Orbital Angular Momentum Spectroscopy. Applications to Electron Magnetic Chiral Dichroism, Plasmon-loss, and Core-loss , 2020, Microscopy and Microanalysis.

[4]  V. Grillo,et al.  Exploring the azimuthal symmetries of electronic transitions in molecular and biomolecular systems by swift electrons , 2020, 2005.07440.

[5]  V. Grillo,et al.  A general framework for conformal transformations in electron optics , 2020, 2003.09635.

[6]  R. Ravelli,et al.  Efficient molecule discrimination in electron microscopy through an optimized orbital angular momentum sorter , 2020, 2001.08918.

[7]  K. Saitoh,et al.  Efficient Measurement of the Orbital-Angular-Momentum Spectrum of an Electron Beam via a Dammann Vortex Grating , 2019 .

[8]  J. Verbeeck,et al.  Prospects for out-of-plane magnetic field measurements through interference of electron vortex modes in the TEM , 2019, Journal of Optics.

[9]  G. Pozzi,et al.  Design of electrostatic phase elements for sorting the orbital angular momentum of electrons. , 2019, Ultramicroscopy.

[10]  E. Karimi,et al.  Orbital angular momentum resolved electron magnetic chiral dichroism , 2019, 1911.02006.

[11]  B. Kooi,et al.  Resolving hydrogen atoms at metal-metal hydride interfaces , 2018, Science Advances.

[12]  F. Mauri,et al.  Position and momentum mapping of vibrations in graphene nanostructures , 2018, Nature.

[13]  Ottawa,et al.  Orbital Angular Momentum and Energy Loss Characterization of Plasmonic Excitations in Metallic Nanostructures in TEM , 2018, ACS Photonics.

[14]  R. Courtland The microscope revolution that’s sweeping through materials science , 2018, Nature.

[15]  Q. Ramasse,et al.  Nanoscale momentum-resolved vibrational spectroscopy , 2018, Science Advances.

[16]  M. Segev,et al.  ‘Twisted’ electrons , 2018 .

[17]  Ivan Lazić,et al.  Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution , 2018, Scientific Reports.

[18]  Veit Elser,et al.  Electron ptychography of 2D materials to deep sub-ångström resolution , 2018, Nature.

[19]  J. Verbeeck,et al.  Demonstration of a 2 × 2 programmable phase plate for electrons. , 2017, Ultramicroscopy.

[20]  R. Boyd,et al.  Observation of nanoscale magnetic fields using twisted electron beams , 2017, Nature Communications.

[21]  M. Babiker,et al.  Electron vortices: Beams with orbital angular momentum , 2017 .

[22]  R. Boyd,et al.  Measuring the orbital angular momentum spectrum of an electron beam , 2017, Nature Communications.

[23]  C. Jia,et al.  Atomic resolution imaging of YAlO3: Ce in the chromatic and spherical aberration corrected PICO electron microscope. , 2017, Ultramicroscopy.

[24]  K. Nielsch,et al.  Atom size electron vortex beams with selectable orbital angular momentum , 2017, Scientific Reports.

[25]  P. Schattschneider,et al.  EMCD with an electron vortex filter: Limitations and possibilities. , 2017, Ultramicroscopy.

[26]  F. Nori,et al.  Theory and applications of free-electron vortex states , 2017, 1703.06879.

[27]  A. Agrawal,et al.  Origins and demonstrations of electrons with orbital angular momentum , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  G. Pozzi,et al.  Tunable Ampere phase plate for low dose imaging of biomolecular complexes , 2017, Scientific Reports.

[29]  R. Boyd,et al.  Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam. , 2016, Physical review letters.

[30]  M. Lavery,et al.  Efficient sorting of free electron orbital angular momentum , 2016, 1609.09124.

[31]  B. McMorran,et al.  Stern-Gerlach-like approach to electron orbital angular momentum measurement , 2016, 1606.03631.

[32]  R. Boyd,et al.  Structured quantum waves , 2015, Nature Physics.

[33]  Takayuki Tamai,et al.  Phase-contrast scanning transmission electron microscopy. , 2015, Microscopy.

[34]  R. Boyd,et al.  Holographic Generation of Highly Twisted Electron Beams , 2014, Microscopy and Microanalysis.

[35]  J. Verbeeck,et al.  Quantitative measurement of orbital angular momentum in electron microscopy , 2014, 1403.4398.

[36]  B. Malomed,et al.  Unveiling the orbital angular momentum and acceleration of electron beams. , 2014, Physical review letters.

[37]  Mark R. Dennis,et al.  Generation of Nondiffracting Electron Bessel Beams , 2014 .

[38]  Jo Verbeeck,et al.  Measuring the Orbital Angular Momentum of Electron Beams , 2014, 1401.7211.

[39]  J. Verbeeck,et al.  Transport of intensity phase retrieval of arbitrary wave fields including vortices. , 2013, Physical review letters.

[40]  Richard Henderson,et al.  Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise , 2013, Proceedings of the National Academy of Sciences.

[41]  N. Tanaka,et al.  Measuring the orbital angular momentum of electron vortex beams using a forked grating. , 2013, Physical review letters.

[42]  G. Botton,et al.  Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. , 2013, Physical review letters.

[43]  A. Arie,et al.  Generation of electron Airy beams , 2012, Nature.

[44]  Jabez J. McClelland,et al.  Electron Vortex Beams with High Quanta of Orbital Angular Momentum , 2011, Science.

[45]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[46]  P. Schattschneider,et al.  Production and application of electron vortex beams , 2010, Nature.

[47]  Akira Tonomura,et al.  Generation of electron beams carrying orbital angular momentum , 2010, Nature.

[48]  H. Rose Historical aspects of aberration correction. , 2009, Journal of electron microscopy.

[49]  P. Midgley,et al.  Electron tomography and holography in materials science. , 2009, Nature materials.

[50]  Franco Nori,et al.  Semiclassical dynamics of electron wave packet states with phase vortices. , 2007, Physical review letters.

[51]  Ondrej L. Krivanek,et al.  Towards sub-Å electron beams , 1999 .

[52]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[53]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[54]  E. Ruska Das Entstehen des Elektronenmikroskops und der Elektronenmikroskopie (Nobel-Vortrag) , 1987 .

[55]  J. Y. Wang,et al.  Optical resolution through a turbulent medium with adaptive phase compensations , 1977 .

[56]  Jr-hau He,et al.  Optimization of monochromated TEM for ultimate resolution imaging and ultrahigh resolution electron energy loss spectroscopy. , 2018, Ultramicroscopy.