Effectively Subsampled Quadratures for Least Squares Polynomial Approximations

This paper proposes a new deterministic sampling strategy for constructing polynomial chaos approximations for expensive physics simulation models. The proposed approach, effectively subsampled quadratures involves sparsely subsampling an existing tensor grid using QR column pivoting. For polynomial interpolation using hyperbolic or total order sets, we then solve the following square least squares problem. For polynomial approximation, we use a column pruning heuristic that removes columns based on the highest total orders and then solves the tall least squares problem. While we provide bounds on the condition number of such tall submatrices, it is difficult to ascertain how column pruning effects solution accuracy as this is problem specific. We conclude with numerical experiments on an analytical function and a model piston problem that show the efficacy of our approach compared with randomized subsampling. We also show an example where this method fails.

[1]  Nikolaos V. Sahinidis,et al.  Uncertainty Quantification in CO2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion , 2013 .

[2]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[3]  Geoffrey T. Parks,et al.  Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies , 2017, J. Open Source Softw..

[4]  Christian H. Bischof,et al.  A BLAS-3 Version of the QR Factorization with Column Pivoting , 1998, SIAM J. Sci. Comput..

[5]  Luca Bruno,et al.  Stochastic aerodynamics and aeroelasticity of a flat plate via generalised Polynomial Chaos , 2009 .

[6]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[7]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[8]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[9]  Å. Björck Numerical Methods in Matrix Computations , 2014 .

[10]  Achiya Dax,et al.  A modified Gram–Schmidt algorithm with iterative orthogonalization and column pivoting , 2000 .

[11]  Christos Boutsidis,et al.  An improved approximation algorithm for the column subset selection problem , 2008, SODA.

[12]  Gary Tang,et al.  Subsampled Gauss Quadrature Nodes for Estimating Polynomial Chaos Expansions , 2014, SIAM/ASA J. Uncertain. Quantification.

[13]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[14]  Fabio Nobile,et al.  Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..

[15]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[16]  R. C. Thompson Principal submatrices IX: Interlacing inequalities for singular values of submatrices , 1972 .

[17]  Tao Zhou,et al.  A Christoffel function weighted least squares algorithm for collocation approximations , 2014, Math. Comput..

[18]  D. Lubinsky A Survey of Weighted Polynomial Approximation with Exponential Weights , 2007 .

[19]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[20]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[21]  Alvise Sommariva,et al.  Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..

[22]  Dongbin Xiu,et al.  Weighted discrete least-squares polynomial approximation using randomized quadratures , 2015, J. Comput. Phys..

[23]  Per Christian Hansen,et al.  Least Squares Data Fitting with Applications , 2012 .

[24]  Fabio Nobile,et al.  Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces , 2013, SIAM J. Sci. Comput..

[25]  Geoffrey T. Parks,et al.  Leakage Uncertainties in Compressors: The Case of Rotor 37 , 2015 .

[26]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[27]  Ron S. Kenett,et al.  Modern Industrial Statistics: with applications in R, MINITAB and JMP , 2014 .

[28]  Albert Cohen,et al.  Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs , 2015 .

[29]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[30]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[31]  Lloyd N. Trefethen,et al.  Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples , 2011, SIAM Rev..

[32]  Martin Brown,et al.  Subset Selection Algorithms: Randomized vs. Deterministic , 2010 .

[33]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[34]  Adrian Sandu,et al.  Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects , 2006 .

[35]  V N Temljakov APPROXIMATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES WITH BOUNDED MIXED DIFFERENCE , 1982 .

[36]  G. Stewart,et al.  Rank degeneracy and least squares problems , 1976 .

[37]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[38]  Mark A. Taylor,et al.  A Cardinal Function Algorithm for Computing Multivariate Quadrature Points , 2007, SIAM J. Numer. Anal..

[39]  Alvise Sommariva,et al.  Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points , 2011, Math. Comput..

[40]  Albert Cohen,et al.  On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.

[41]  Ilse C. F. Ipsen,et al.  On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..