Effectively Subsampled Quadratures for Least Squares Polynomial Approximations
暂无分享,去创建一个
Sankaran Mahadevan | Pranay Seshadri | Akil Narayan | S. Mahadevan | P. Seshadri | A. Narayan | Pranay Seshadri
[1] Nikolaos V. Sahinidis,et al. Uncertainty Quantification in CO2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion , 2013 .
[2] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[3] Geoffrey T. Parks,et al. Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies , 2017, J. Open Source Softw..
[4] Christian H. Bischof,et al. A BLAS-3 Version of the QR Factorization with Column Pivoting , 1998, SIAM J. Sci. Comput..
[5] Luca Bruno,et al. Stochastic aerodynamics and aeroelasticity of a flat plate via generalised Polynomial Chaos , 2009 .
[6] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[7] Alireza Doostan,et al. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..
[8] Michael S. Eldred,et al. Sparse Pseudospectral Approximation Method , 2011, 1109.2936.
[9] Å. Björck. Numerical Methods in Matrix Computations , 2014 .
[10] Achiya Dax,et al. A modified Gram–Schmidt algorithm with iterative orthogonalization and column pivoting , 2000 .
[11] Christos Boutsidis,et al. An improved approximation algorithm for the column subset selection problem , 2008, SODA.
[12] Gary Tang,et al. Subsampled Gauss Quadrature Nodes for Estimating Polynomial Chaos Expansions , 2014, SIAM/ASA J. Uncertain. Quantification.
[13] Alireza Doostan,et al. A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..
[14] Fabio Nobile,et al. Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..
[15] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[16] R. C. Thompson. Principal submatrices IX: Interlacing inequalities for singular values of submatrices , 1972 .
[17] Tao Zhou,et al. A Christoffel function weighted least squares algorithm for collocation approximations , 2014, Math. Comput..
[18] D. Lubinsky. A Survey of Weighted Polynomial Approximation with Exponential Weights , 2007 .
[19] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[20] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[21] Alvise Sommariva,et al. Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..
[22] Dongbin Xiu,et al. Weighted discrete least-squares polynomial approximation using randomized quadratures , 2015, J. Comput. Phys..
[23] Per Christian Hansen,et al. Least Squares Data Fitting with Applications , 2012 .
[24] Fabio Nobile,et al. Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces , 2013, SIAM J. Sci. Comput..
[25] Geoffrey T. Parks,et al. Leakage Uncertainties in Compressors: The Case of Rotor 37 , 2015 .
[26] Ralph C. Smith,et al. Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .
[27] Ron S. Kenett,et al. Modern Industrial Statistics: with applications in R, MINITAB and JMP , 2014 .
[28] Albert Cohen,et al. Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs , 2015 .
[29] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[30] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[31] Lloyd N. Trefethen,et al. Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples , 2011, SIAM Rev..
[32] Martin Brown,et al. Subset Selection Algorithms: Randomized vs. Deterministic , 2010 .
[33] H. Harbrecht,et al. On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .
[34] Adrian Sandu,et al. Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects , 2006 .
[35] V N Temljakov. APPROXIMATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES WITH BOUNDED MIXED DIFFERENCE , 1982 .
[36] G. Stewart,et al. Rank degeneracy and least squares problems , 1976 .
[37] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[38] Mark A. Taylor,et al. A Cardinal Function Algorithm for Computing Multivariate Quadrature Points , 2007, SIAM J. Numer. Anal..
[39] Alvise Sommariva,et al. Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points , 2011, Math. Comput..
[40] Albert Cohen,et al. On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.
[41] Ilse C. F. Ipsen,et al. On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..