Weighted Flow Algorithms (WFA) for stochastic particle coagulation

Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.

[1]  Matthew West,et al.  Particle‐resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume , 2010 .

[2]  F. Einar Kruis,et al.  Direct simulation Monte Carlo for simultaneous nucleation, coagulation, and surface growth in dispersed systems , 2004 .

[3]  Wolfgang Wagner,et al.  An Efficient Stochastic Algorithm for Studying Coagulation Dynamics and Gelation Phenomena , 2000, SIAM J. Sci. Comput..

[4]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[5]  Andreas Eibeck,et al.  Stochastic interacting particle systems and nonlinear kinetic equations , 2003 .

[6]  Robert I. A. Patterson,et al.  A predictor-corrector algorithm for the coupling of stiff ODEs to a particle population balance , 2009, J. Comput. Phys..

[7]  Chuguang Zheng,et al.  Reducing Statistical Noise and Extending the Size Spectrum by Applying Weighted Simulation Particles in Monte Carlo Simulation of Coagulation , 2009 .

[8]  Babovsky Hans On a Monte Carlo scheme for Smoluchowski’s coagulation equation , 1999 .

[9]  Jerome D. Fast,et al.  Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) , 2008 .

[10]  David J. Delene,et al.  Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites , 2002 .

[11]  Markus Kraft,et al.  Modelling nanoparticle dynamics: coagulation, sintering, particle inception and surface growth , 2005 .

[12]  B. Vogel,et al.  Modeling aerosols on the mesoscale‐γ: Treatment of soot aerosol and its radiative effects , 2003 .

[13]  S. Shima,et al.  The super‐droplet method for the numerical simulation of clouds and precipitation: a particle‐based and probabilistic microphysics model coupled with a non‐hydrostatic model , 2007, physics/0701103.

[14]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[15]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[16]  Karl Sabelfeld,et al.  Stochastic particle methods for Smoluchowski coagulation equation: variance reduction and error estimations , 2003, Monte Carlo Methods Appl..

[17]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[18]  Daniel T. Gillespie,et al.  An Exact Method for Numerically Simulating the Stochastic Coalescence Process in a Cloud , 1975 .

[19]  Kimberly A. Prather,et al.  The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties , 2008 .

[20]  D. Gillespie Markov Processes: An Introduction for Physical Scientists , 1991 .

[21]  J. Norris,et al.  Smoluchowski's coagulation equation: uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent , 1998, math/9801145.

[22]  Chuguang Zheng,et al.  Multi-Monte Carlo method for coagulation and condensation/evaporation in dispersed systems. , 2005, Journal of colloid and interface science.

[23]  Anthony S. Wexler,et al.  A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols , 2005 .

[24]  Chuguang Zheng,et al.  Correcting the multi-Monte Carlo method for particle coagulation , 2009 .

[25]  John H. Seinfeld,et al.  Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model , 1999 .

[26]  R. C. Easter,et al.  Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model , 2009, 0903.0029.

[27]  Leonard K. Peters,et al.  A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA) , 2005 .

[28]  Roberto Irizarry,et al.  Fast Monte Carlo methodology for multivariate particulate systems-II: τ-PEMC , 2008 .

[29]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[30]  Andreas Eibeck,et al.  Stochastic Particle Approximations for Smoluchoski’s Coagualtion Equation , 2001 .

[31]  Andreas Bott,et al.  A Flux Method for the Numerical Solution of the Stochastic Collection Equation , 1998 .

[32]  Andreas Eibeck,et al.  Approximative solution of the coagulation–fragmentation equation by stochastic particle systems , 2000 .

[33]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[34]  Markus Kraft,et al.  Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting , 2007 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Adam Shwartz,et al.  Large Deviations For Performance Analysis , 2019 .

[37]  Leonard K. Peters,et al.  A new lumped structure photochemical mechanism for large‐scale applications , 1999 .

[38]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[39]  Shintaro Kawahara,et al.  J an 2 00 7 Super-Droplet Method for the Numerical Simulation of Clouds and Precipitation : a Particle-Based Microphysics Model Coupled with Non-hydrostatic Model , 2008 .

[40]  M. Kleeman,et al.  A 3D Eulerian source-oriented model for an externally mixed aerosol. , 2001, Environmental science & technology.

[41]  Markus Kraft,et al.  A new numerical approach for the simulation of the growth of inorganic nanoparticles , 2006 .

[42]  J. Wilson,et al.  A modeling study of global mixed aerosol fields , 2001 .

[43]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[44]  Chuguang Zheng,et al.  A new event-driven constant-volume method for solution of the time evolution of particle size distribution , 2009, J. Comput. Phys..

[45]  Benjamin Jourdain,et al.  A stochastic approach for the numerical simulation of the general dynamics equation for aerosols , 2003 .

[46]  Y. Efendiev,et al.  Hybrid monte carlo method for simulation of two-component aerosol coagulation and phase segregation. , 2002, Journal of colloid and interface science.

[47]  M. Jacobson Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption , 1999 .

[48]  R. C. Easter,et al.  Simulating the evolution of soot mixing state with a particle-resolved aerosol model , 2008, 0809.0875.

[49]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[50]  Anthony S. Wexler,et al.  Modelling urban and regional aerosols—I. model development , 1994 .

[51]  Roberto Irizarry,et al.  Fast Monte Carlo methodology for multivariate particulate systems—I: Point ensemble Monte Carlo , 2008 .

[52]  M. Jacobson Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions , 2002 .

[53]  Markus Kraft,et al.  Direct Simulation and Mass Flow Stochastic Algorithms to Solve a Sintering-Coagulation Equation , 2005, Monte Carlo Methods Appl..