Inverted planar perovskite solar cells based on CsI-doped PEDOT:PSS with efficiency beyond 20% and small energy loss

An interfacial engineering strategy is successfully developed with a maximum PCE of 20.22%, a high VOC of 1.084 V and a relatively low non-radiative recombination loss in inverted planar perovskite solar cells.

[1]  Tiantian Cao,et al.  Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability , 2019, Organic Electronics.

[2]  F. Zhu,et al.  A sodium citrate-modified-PEDOT:PSS hole transporting layer for performance enhancement in inverted planar perovskite solar cells , 2019, Journal of Materials Chemistry C.

[3]  Guanhua Ren,et al.  Overcoming intrinsic defects of the hole transport layer with optimized carbon nanorods for perovskite solar cells. , 2019, Nanoscale.

[4]  Jong-Hyun Ahn,et al.  Electronic Structure of Nonionic Surfactant-Modified PEDOT:PSS and Its Application in Perovskite Solar Cells with Reduced Interface Recombination. , 2019, ACS applied materials & interfaces.

[5]  Kai Zhu,et al.  Tuning Hole Transport Layer Using Urea for High‐Performance Perovskite Solar Cells , 2018, Advanced Functional Materials.

[6]  Bo Yang,et al.  Performance improvement of perovskite solar cells through enhanced hole extraction: The role of iodide concentration gradient , 2018, Solar Energy Materials and Solar Cells.

[7]  Jing Zhang,et al.  CuSCN modified PEDOT:PSS to improve the efficiency of low temperature processed perovskite solar cells , 2018, Organic Electronics.

[8]  N. Park,et al.  Causes and Solutions of Recombination in Perovskite Solar Cells , 2018, Advanced materials.

[9]  Shinuk Cho,et al.  Water-resistant PEDOT:PSS hole transport layers by incorporating a photo-crosslinking agent for high-performance perovskite and polymer solar cells. , 2018, Nanoscale.

[10]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[11]  Baomin Xu,et al.  Facile phthalocyanine doping into PEDOT leads to highly efficient and stable inverted metal halide perovskite solar cells , 2018 .

[12]  Yifan Zheng,et al.  PEOz-PEDOT:PSS Composite Layer: A Route to Suppressed Hysteresis and Enhanced Open-Circuit Voltage in a Planar Perovskite Solar Cell. , 2018, ACS applied materials & interfaces.

[13]  Yongli Gao,et al.  Enhancing the performance of planar heterojunction perovskite solar cells using stable semiquinone and amine radical modified hole transport layer , 2018, Journal of Power Sources.

[14]  Jung Hyun Kim,et al.  Improved Stability of Interfacial Energy-Level Alignment in Inverted Planar Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[15]  R. Friend,et al.  Interface-Dependent Radiative and Nonradiative Recombination in Perovskite Solar Cells , 2018 .

[16]  Tsutomu Miyasaka,et al.  Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells , 2018 .

[17]  Ping Liu,et al.  WOx@PEDOT Core–Shell Nanorods: Hybrid Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells , 2018 .

[18]  Liming Ding,et al.  One-step roll-to-roll air processed high efficiency perovskite solar cells , 2018 .

[19]  S. Meskers,et al.  The effect of oxygen on the efficiency of planar p–i–n metal halide perovskite solar cells with a PEDOT:PSS hole transport layer† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta11128b , 2018, Journal of materials chemistry. A.

[20]  Yuying Hao,et al.  Efficiency Enhancement of Perovskite Solar Cells via Electrospun CuO Nanowires as Buffer Layers. , 2018, ACS applied materials & interfaces.

[21]  M. Li,et al.  PEDOT:PSS-CrO3 composite hole-transporting layer for high-performance p-i-n structure perovskite solar cells , 2018 .

[22]  Guipeng Yu,et al.  Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating , 2018 .

[23]  Shinuk Cho,et al.  Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer , 2018, Scientific Reports.

[24]  T. Hayat,et al.  Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[25]  Yongli Gao,et al.  Energy level and thickness control on PEDOT:PSS layer for efficient planar heterojunction perovskite cells , 2018 .

[26]  Zhigang Zang,et al.  Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS. , 2017, ACS applied materials & interfaces.

[27]  Zhigang Yin,et al.  Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21% , 2017, Advanced materials.

[28]  Yongfang Li,et al.  Catechol derivatives as dopants in PEDOT:PSS to improve the performance of p–i–n perovskite solar cells , 2017 .

[29]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[30]  Michael Grätzel,et al.  Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells , 2017, Science Advances.

[31]  Guangda Niu,et al.  Inorganic CsPbI3 Perovskite‐Based Solar Cells: A Choice for a Tandem Device , 2017 .

[32]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[33]  Chun-Guey Wu,et al.  The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells , 2017 .

[34]  Henk J. Bolink,et al.  Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells , 2017 .

[35]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[36]  E. Treossi,et al.  Cooperative Effect of GO and Glucose on PEDOT:PSS for High VOC and Hysteresis‐Free Solution‐Processed Perovskite Solar Cells , 2016 .

[37]  Lin Sun,et al.  Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI3 in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[38]  C. Brabec,et al.  Overcoming the Interface Losses in Planar Heterojunction Perovskite‐Based Solar Cells , 2016, Advanced materials.

[39]  Xiao-Fang Jiang,et al.  Improving Film Formation and Photovoltage of Highly Efficient Inverted‐Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers , 2016 .

[40]  Paul Meredith,et al.  Organohalide Perovskites for Solar Energy Conversion. , 2016, Accounts of chemical research.

[41]  Lei Meng,et al.  Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. , 2016, Accounts of chemical research.

[42]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[43]  W. Lövenich,et al.  Inverted, Environmentally Stable Perovskite Solar Cell with a Novel Low‐Cost and Water‐Free PEDOT Hole‐Extraction Layer , 2015 .

[44]  Luzhou Chen,et al.  The efficiency limit of CH3NH3PbI3 perovskite solar cells , 2015 .

[45]  H. Bolink,et al.  Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells , 2015, Advanced materials.

[46]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[47]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[48]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[49]  Thomas Kirchartz,et al.  Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells , 2015 .

[50]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[51]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[52]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[53]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[54]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[55]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[56]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[57]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[58]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[59]  J. Werner,et al.  Comparative study of electroluminescence from Cu(In,Ga)Se2 and Si solar cells , 2007 .