The first linkage map for a recombinant inbred line population in cotton (Gossypium barbadense) and its use in studies of PEG-induced dehydration tolerance

[1]  Don C. Jones,et al.  Genetic analysis and quantitative trait locus mapping of PEG‐induced osmotic stress tolerance in cotton , 2015 .

[2]  L. M. Campbell,et al.  Cotton (Gossypium hirsutum L.). , 2015, Methods in molecular biology.

[3]  Zhongxu Lin,et al.  A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations , 2015, Molecular Genetics and Genomics.

[4]  Jinfa F. Zhang,et al.  Identification of drought-responsive genes in a drought-tolerant cotton (Gossypium hirsutum L.) cultivar under reduced irrigation field conditions and development of candidate gene markers for drought tolerance , 2014, Molecular Breeding.

[5]  Jack C. McCarty,et al.  Introgression genetics and breeding between Upland and Pima cotton: a review , 2014, Euphytica.

[6]  M. Gore,et al.  Linkage Map Construction and Quantitative Trait Locus Analysis of Agronomic and Fiber Quality Traits in Cotton , 2014 .

[7]  Yong Zheng,et al.  Genome-Wide Functional Analysis of Cotton (Gossypium hirsutum) in Response to Drought , 2013, PloS one.

[8]  Zhongxu Lin,et al.  A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton , 2013, BMC Genomics.

[9]  Zhongxu Lin,et al.  Intraspecific linkage map construction and QTL mapping of yield and fiber quality of Gossypium babardense. , 2013 .

[10]  Dirk Inzé,et al.  The Agony of Choice: How Plants Balance Growth and Survival under Water-Limiting Conditions1 , 2013, Plant Physiology.

[11]  Tianzhen Zhang,et al.  Variations and Transmission of QTL Alleles for Yield and Fiber Qualities in Upland Cotton Cultivars Developed in China , 2013, PloS one.

[12]  M. Gore,et al.  Linkage Map Construction and QTL Analysis of Agronomic and Fiber Quality Traits in Cotton , 2013 .

[13]  Jian Ye,et al.  Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction , 2012, BMC Bioinformatics.

[14]  J. Stewart,et al.  Identification of Molecular Markers Associated with Semigamy in Cotton , 2012, Plant Molecular Biology Reporter.

[15]  Zhongxu Lin,et al.  Functional Markers for Cellulose Synthase and Their Comparison to SSRs in Cotton , 2012, Plant Molecular Biology Reporter.

[16]  J. Udall,et al.  Development and mapping of SNP assays in allotetraploid cotton , 2012, Theoretical and Applied Genetics.

[17]  John Z. Yu,et al.  A High-Density Simple Sequence Repeat and Single Nucleotide Polymorphism Genetic Map of the Tetraploid Cotton Genome , 2012, G3: Genes | Genomes | Genetics.

[18]  P. Bauer,et al.  Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.) , 2012, BMC Plant Biology.

[19]  John Z. Yu,et al.  Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species , 2012, International journal of plant genomics.

[20]  A. Kumar,et al.  Marker assisted selection and crop management for salt tolerance: A review , 2011 .

[21]  Wei-Wei Zhang,et al.  Construction of recombinant Bacillus subtilis strains for efficient pimelic acid synthesis , 2011 .

[22]  Tianzhen Zhang,et al.  QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions , 2011 .

[23]  M. Tester,et al.  Genetic analysis of abiotic stress tolerance in crops. , 2011, Current opinion in plant biology.

[24]  R. Visser,et al.  In vitro screening and QTL analysis for drought tolerance in diploid potato , 2011, Euphytica.

[25]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[26]  Tianzhen Zhang,et al.  Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2 , 2011, Theoretical and Applied Genetics.

[27]  Jinfa F. Zhang,et al.  Identification of salt responsive genes using comparative microarray analysis in Upland cotton (Gossypium hirsutum L.). , 2011, Plant science : an international journal of experimental plant biology.

[28]  Shiyi Tang,et al.  Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.) , 2011, Molecular Breeding.

[29]  Zhongxu Lin,et al.  Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G. barbadense , 2011, BMC Genomics.

[30]  M. Tester,et al.  High-throughput shoot imaging to study drought responses. , 2010, Journal of experimental botany.

[31]  P. Langridge,et al.  Genetic and genomic tools to improve drought tolerance in wheat. , 2010, Journal of experimental botany.

[32]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[33]  Tianzhen Zhang,et al.  Quantitative trait loci controlling plant architectural traits in cotton. , 2009 .

[34]  Shuxun Yu,et al.  DNA Polymorphisms of Genes Involved in Fiber Development in a Selected Set of Cultivated Tetraploid Cotton , 2009 .

[35]  Fu-guang Li,et al.  Construction and analysis of cotton (Gossypium arboreum L.) drought-related cDNA library , 2009, BMC Research Notes.

[36]  J. Lacape,et al.  A new interspecific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton , 2009, Theoretical and Applied Genetics.

[37]  Thomas Altmann,et al.  SNP identification in crop plants. , 2009, Current opinion in plant biology.

[38]  Jing Zheng,et al.  Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.) , 2009, Molecular Breeding.

[39]  M. Babar,et al.  Identification of QTLs and impact of selection from various environments (dry vs irrigated) on the genetic relationships among the selected cotton lines from f 6 population using a phylogenetic approach , 2009 .

[40]  A. Paterson,et al.  Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits , 2009, Molecular Breeding.

[41]  J. Motamayor,et al.  SSCP markers provide a useful alternative to microsatellites in genotyping and estimating genetic diversity in populations and germplasm collections of plant specialty crops , 2008, Electrophoresis.

[42]  William H. Piel,et al.  PhyloWidget: web-based visualizations for the tree of life , 2008, Bioinform..

[43]  John Z. Yu,et al.  Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping , 2008, Theoretical and Applied Genetics.

[44]  Jun Zhu,et al.  QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations , 2008, Bioinform..

[45]  Zhang Tian-zhen QTL Mapping of Leaf Chlorophyll Content and Photosynthetic Rates in Cotton , 2008 .

[46]  S. Reader,et al.  Breeding for abiotic stresses for sustainable agriculture , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  Shuhong Zhao,et al.  Candidate Gene Identification Approach: Progress and Challenges , 2007, International journal of biological sciences.

[48]  J. Jenkins,et al.  Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton , 2007, Molecular Genetics and Genomics.

[49]  M. Botella,et al.  Responses of ethylene biosynthesis to saline stress in seedlings of eight plant species , 2007, Plant Growth Regulation.

[50]  J. Jenkins,et al.  Molecular and SNP characterization of two genome specific transcription factor genes GhMyb8 and GhMyb10 in cotton species , 2007, Euphytica.

[51]  Zhongxu Lin,et al.  High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers , 2007 .

[52]  Tianzhen Zhang,et al.  A Microsatellite-Based, Gene-Rich Linkage Map Reveals Genome Structure, Function and Evolution in Gossypium , 2007, Genetics.

[53]  N. Sreenivasulu,et al.  Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. , 2007, Gene.

[54]  Jian-Kang Zhu,et al.  Plant Salt Stress , 2007 .

[55]  A. Paterson,et al.  Recent Advances And Future Prospective in Molecular Breeding of Cotton For Drought and Salinity Stress Tolerance , 2007 .

[56]  P. Hasegawa,et al.  Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops , 2007 .

[57]  F. Krens,et al.  Plant translational genomics: from model species to crops , 2007, Molecular Breeding.

[58]  Roberto Tuberosa,et al.  Genomics-based approaches to improve drought tolerance of crops. , 2006, Trends in plant science.

[59]  Guy Mergeai,et al.  Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. , 2006 .

[60]  J. Ooijen,et al.  JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations , 2006 .

[61]  Zhongxu Lin,et al.  QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense , 2006, Euphytica.

[62]  E. Stockinger,et al.  Mapping regulatory genes as candidates for cold and drought stress tolerance in barley , 2006, Theoretical and Applied Genetics.

[63]  N. Tuteja,et al.  Cold, salinity and drought stresses: an overview. , 2005, Archives of biochemistry and biophysics.

[64]  Tianzhen Zhang,et al.  Quantitative Trait Loci Mapping of Leaf Morphological Traits and Chlorophyll Content in Cultivated Tetraploid Cotton , 2005 .

[65]  Yingzhi Lu,et al.  Genetic improvement of New Mexico acala cotton germplasm and their genetic diversity , 2005 .

[66]  S. Wanamaker,et al.  Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress , 2005, Molecular Genetics and Genomics.

[67]  L. Rieseberg,et al.  Identification and mapping of SNPs from ESTs in sunflower , 2005, Theoretical and Applied Genetics.

[68]  Radhia Gargouri-Bouzid,et al.  Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants , 2005 .

[69]  R. Sunkar,et al.  Drought and Salt Tolerance in Plants , 2005 .

[70]  A. Paterson,et al.  Genetic dissection of cotton physiological responses to arid conditions and their inter‐relationships with productivity , 2004 .

[71]  V. Lefebvre,et al.  The candidate gene approach in plant genetics: a review , 2001, Molecular Breeding.

[72]  C. W. Smith,et al.  Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium) , 2004, Theoretical and Applied Genetics.

[73]  A. Good,et al.  Breeding for Abiotic Stress Resistance: Challenges and Opportunities , 2004 .

[74]  K. Shinozaki,et al.  Monitoring Expression Profiles of Rice Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses1[w] , 2003, Plant Physiology.

[75]  Trung B. Nguyen,et al.  A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. , 2003, Genome.

[76]  D. Neale,et al.  Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda , 2003, Theoretical and Applied Genetics.

[77]  D. Knauft Cotton: Origin, History, Technology, and Production , 2003 .

[78]  J. Wendel,et al.  Polyploidy and the Evolutionary History of Cotton , 2003 .

[79]  W. Guo,et al.  Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population , 2002, Theoretical and Applied Genetics.

[80]  H. Hirt,et al.  Complexity, cross talk and integration of plant MAP kinase signalling. , 2002, Current opinion in plant biology.

[81]  A. Rafalski Applications of single nucleotide polymorphisms in crop genetics. , 2002, Current opinion in plant biology.

[82]  Jian-Kang Zhu,et al.  Salt and drought stress signal transduction in plants. , 2002, Annual review of plant biology.

[83]  J. Zhu,et al.  Plant salt tolerance. , 2001, Trends in plant science.

[84]  Piero Carninci,et al.  Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray , 2001, Plant Cell.

[85]  K. Shinozaki,et al.  Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. , 2000, The Plant journal : for cell and molecular biology.

[86]  J. Stewart,et al.  Economical and rapid method for extracting cotton genomic DNA. , 2000 .

[87]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[88]  S. Garcia-Vallvé,et al.  Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. , 1999, Molecular biology and evolution.

[89]  W. Campbell NITRATE REDUCTASE STRUCTURE, FUNCTION AND REGULATION: Bridging the Gap between Biochemistry and Physiology. , 1999, Annual review of plant physiology and plant molecular biology.

[90]  E. Leidi,et al.  Variation in carbon isotope discrimination and other traits related to drought tolerance in upland cotton cultivars under dryland conditions , 1999 .

[91]  C. W. Smith,et al.  Rice: origin, history, technology and production. , 1999 .

[92]  L. V. Raamsdonk,et al.  Plant Evolution in man-made Habitats , 1999 .

[93]  M. Kirkham,et al.  Screening cotton genotypes for seedling drought tolerance , 1998 .

[94]  R. Serrano,et al.  Genetic engineering of salt and drought tolerance with yeast regulatory genes , 1998 .

[95]  G. Coruzzi,et al.  THE MOLECULAR-GENETICS OF NITROGEN ASSIMILATION INTO AMINO ACIDS IN HIGHER PLANTS. , 1996, Annual review of plant physiology and plant molecular biology.

[96]  A. Paterson,et al.  A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. , 1994, Genetics.

[97]  M. Petřivalský,et al.  Effectors for the osmoinduced proline response in higher plants , 1993 .

[98]  J. Wendel,et al.  Genetic Diversity in Gossypium hirsutum and the Origin of Upland Cotton , 1992 .

[99]  R. Percy,et al.  Registration of Pima S-7 American Pima cotton , 1992 .

[100]  T. Sekiya,et al.  Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. , 1989, Genomics.

[101]  K. Bradford Manipulation of Seed Water Relations Via Osmotic Priming to Improve Germination Under Stress Conditions , 1986, HortScience.

[102]  A. Hearn,et al.  Cotton (Gossypium hirsutum L.): Physiological and morphological responses to water deficits and their relationship to yield , 1986 .

[103]  Paul J. Kramer,et al.  Water Relations of Plants , 1983 .

[104]  B. E. Michel,et al.  Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. , 1983, Plant physiology.

[105]  P. Kramer 12 – Water Deficits and Plant Growth , 1983 .

[106]  B. McMichael,et al.  Use of Transpiration Decline Curves to Identify Drought-Tolerant Cotton Germplasm 1 , 1982 .

[107]  P. Fryxell PHENETIC ANALYSIS AND THE PHYLOGENY OF THE DIPLOID SPECIES OF GOSSYPIUM L. (MALVACEAE) , 1971, Evolution; international journal of organic evolution.

[108]  P. Fryxell A Redefinition of the Tribe Gossypieae , 1968, Botanical Gazette.

[109]  Theodore T. Kozlowski,et al.  Water deficits and plant growth , 1968 .

[110]  W. Williams Evolution of Crop Plants , 1965, Nature.

[111]  S. G. Stephens The Cytogenetics of Speciation in Gossypium. I. Selective Elimination of the Donor Parent Genotype in Interspecific Backcrosses. , 1949, Genetics.

[112]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .