Path Planning for image based control with omnidirectional cameras

Image-based servoing is a local control solution, it requires thus the definition of intermediate subgoals in the sensor space when the robot initial position is far away from the desired one. This issue is crucial when using omnidirectional cameras since very large motions can be achieved. This paper addresses the problem of generating smooth trajectories in the image space of the entire class of central cameras (including conventional perspective cameras). The model of the observed target is assumed to be unknown. First geometrical relationships between imaged points and lines in two views are exploited to estimate a generic homography matrix. A closed-form homography path between given start and end-points is then derived and used to generate the trajectories of image features. Results obtained with real data are finally presented

[1]  Helder Araujo,et al.  Multiple robots in geometric formation: Control structure and sensing , 2000 .

[2]  Václav Hlaváč,et al.  MOTION ESTIMATION USING CENTRAL PANORAMIC CAMERAS , 1998 .

[3]  Helder Araújo,et al.  Geometric Properties of Central Catadioptric Line Images , 2002, ECCV.

[4]  Radu Horaud,et al.  Visual Trajectories from Uncalibrated Stereo , 1997 .

[5]  Minoru Asada,et al.  Trajectory generation for obstacle avoidance of uncalibrated stereo visual servoing without 3D reconstruction , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[6]  Shree K. Nayar,et al.  A Theory of Single-Viewpoint Catadioptric Image Formation , 1999, International Journal of Computer Vision.

[7]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[8]  Philippe Martinet,et al.  Central catadioptric visual servoing from 3D straight lines , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[9]  Kostas Daniilidis,et al.  Mirrors in motion: epipolar geometry and motion estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[10]  Philippe Martinet,et al.  2 1/2 D visual servoing with central catadioptric cameras , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  François Chaumette,et al.  Path planning for robust image-based control , 2002, IEEE Trans. Robotics Autom..

[12]  Olivier Faugeras,et al.  Motion and Structure from Motion in a piecewise Planar Environment , 1988, Int. J. Pattern Recognit. Artif. Intell..

[13]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[14]  François Chaumette,et al.  Optimal Camera Trajectory with Image-Based Control , 2003, Int. J. Robotics Res..

[15]  Radu Horaud,et al.  Visual Servoing from Lines , 2002, Int. J. Robotics Res..

[16]  James P. Ostrowski,et al.  Optimal motion planning in the image plane for mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Kostas Daniilidis,et al.  A Unifying Theory for Central Panoramic Systems and Practical Applications , 2000, ECCV.

[18]  A. Hanson,et al.  Scaled Euclidean 3D reconstruction based on externally uncalibrated cameras , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[19]  Philippe Martinet,et al.  Omnidirectional visual servoing from polar lines , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[20]  Toshiro Noritsugu,et al.  Potential Switching Control in Visual Servo , 2000 .

[21]  Daniel E. Koditschek,et al.  Visual servoing via navigation functions , 2002, IEEE Trans. Robotics Autom..

[22]  Radu Horaud,et al.  Visual Servoing/Tracking Using Central Catadioptric Images , 2002, ISER.

[23]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[24]  Gregory D. Hager,et al.  Robust Vision for Vision-Based Control of Motion , 1999 .