Gaussian process regressors for multiuser detection in DS-CDMA systems

In this paper we present Gaussian processes for Regression (GPR) as a novel detector for CDMA digital communications. Particularly, we propose GPR for constructing analytical nonlinear multiuser detectors in CDMA communication systems. GPR can easily compute the parameters that describe its nonlinearities by maximum likelihood. Thereby, no cross-validation is needed, as it is typically used in nonlinear estimation procedures. The GPR solution is analytical, given its parameters, and it does not need to solve an optimization problem for building the nonlinear estimator. These properties provide fast and accurate learning, two major issues in digital communications. The GPR with a linear decision function can be understood as a regularized MMSE detector, in which the regularization parameter is optimally set. We also show the GPR receiver to be a straightforward nonlinear extension of the linear minimum mean square error (MMSE) criterion, widely used in the design of these receivers. We argue the benefits of this new approach in short codes CDMA systems where little information on the users' codes, users' amplitudes or the channel is available. The paper includes some experiments to show that GPR outperforms linear (MMSE) and nonlinear (SVM) state-ofthe- art solutions.

[1]  Carl E. Rasmussen,et al.  Assessing Approximations for Gaussian Process Classification , 2005, NIPS.

[2]  Sergio Verdú,et al.  Linear multiuser detectors for synchronous code-division multiple-access channels , 1989, IEEE Trans. Inf. Theory.

[3]  Alexander J. Smola,et al.  Sparse Greedy Gaussian Process Regression , 2000, NIPS.

[4]  D.G.M. Cruickshank Radial basis function receivers for DS-CDMA , 1996 .

[5]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[6]  J. G. Proakis Adaptive equalization for TDMA digital mobile radio , 1991 .

[7]  Luca Rugini,et al.  A full-rank regularization technique for MMSE detection in multiuser CDMA systems , 2005, IEEE Communications Letters.

[8]  Shubao Liu,et al.  Blind adaptive multiuser detection using a recurrent neural network , 2004, 2004 International Conference on Communications, Circuits and Systems (IEEE Cat. No.04EX914).

[9]  Vijay K. Bhargava,et al.  Recent advances in cellular wireless communications , 1999, IEEE Commun. Mag..

[10]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[11]  Urbashi Mitra,et al.  Neural network techniques for adaptive multiuser demodulation , 1994, IEEE J. Sel. Areas Commun..

[12]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[13]  Anders Høst-Madsen,et al.  MMSE/PIC multiuser detection for DS/CDMA systems with inter- and intra-cell interference , 1999, IEEE Trans. Commun..

[14]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[15]  O. Bousquet,et al.  Kernel methods and their potential use in signal processing , 2004, IEEE Signal Processing Magazine.

[16]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[18]  Craig K. Rushforth,et al.  A Family of Suboptimum Detectors for Coherent Multiuser Communications , 1990, IEEE J. Sel. Areas Commun..

[19]  Christopher K. I. Williams Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond , 1999, Learning in Graphical Models.

[20]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[21]  Ramjee Prasad,et al.  CDMA for wireless personal communications , 1996 .

[22]  Y. Kabashima A CDMA multiuser detection algorithm on the basis of belief propagation , 2003 .

[23]  Bernd-Peter Paris,et al.  Neural networks for multiuser detection in code-division multiple-access communications , 1992, IEEE Trans. Commun..

[24]  Zhi-Quan Luo,et al.  Robust blind multiuser detection based on the worst-case performance optimization of the MMSE receiver , 2005, IEEE Transactions on Signal Processing.

[25]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[26]  Juan José Murillo-Fuentes,et al.  Gaussian Processes for Multiuser Detection in CDMA receivers , 2005, NIPS.

[27]  Luca Rugini,et al.  Regularized MMSE multiuser detection using covariance matrix tapering , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[28]  Masato Okada,et al.  Approximate belief propagation, density evolution, and statistical neurodynamics for CDMA multiuser detection , 2005, IEEE Transactions on Information Theory.

[29]  Lajos Hanzo,et al.  Support vector machine multiuser receiver for DS-CDMA signals in multipath channels , 2001, IEEE Trans. Neural Networks.

[30]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[31]  M. Opper Sparse Online Gaussian Processes , 2008 .

[32]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[33]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[34]  Carlos J. Escudero Blind Adaptive Interference Suppression for Direct-sequence Cdma , 2007 .

[35]  Juan José Murillo-Fuentes,et al.  Gaussian Processes for Digital Communications , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[36]  Zoubin Ghahramani,et al.  Local and global sparse Gaussian process approximations , 2007, AISTATS.

[37]  Neil D. Lawrence,et al.  Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.

[38]  Upamanyu Madhow,et al.  MMSE interference suppression for direct-sequence spread-spectrum CDMA , 1994, IEEE Trans. Commun..

[39]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[40]  Teng Joon Lim,et al.  A variational free energy minimization interpretation of multiuser detection in CDMA , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[41]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[42]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.

[43]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[44]  John G. Proakis,et al.  Digital Communications , 1983 .

[45]  R. Tanner,et al.  Volterra Based Receivers for Ds-Cdma , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[46]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[47]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[48]  Lars K. Rasmussen,et al.  Asymptotically optimal nonlinear MMSE multiuser detection based on multivariate Gaussian approximation , 2005, IEEE Transactions on Communications.

[49]  H. Vincent Poor,et al.  Probability of error in MMSE multiuser detection , 1997, IEEE Trans. Inf. Theory.