Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity

Keywords: connectome ; community structure ; dynamics ; Markov process ; resting - state ; LTS5 Reference EPFL-ARTICLE-185801doi:10.1017/nws.2013.19 URL: http://arxiv.org/abs/1304.0485 Record created on 2013-04-03, modified on 2017-05-10

[1]  Edward T. Bullmore,et al.  Whole-brain anatomical networks: Does the choice of nodes matter? , 2010, NeuroImage.

[2]  Alex Arenas,et al.  Analysis of the structure of complex networks at different resolution levels , 2007, physics/0703218.

[3]  Dante R Chialvo,et al.  Brain organization into resting state networks emerges at criticality on a model of the human connectome. , 2012, Physical review letters.

[4]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[6]  D. R. White,et al.  Structural cohesion and embeddedness: A hierarchical concept of social groups , 2003 .

[7]  Santo Fortunato,et al.  Consensus clustering in complex networks , 2012, Scientific Reports.

[8]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[9]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[10]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[11]  Alan C. Evans,et al.  Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. , 2008, Cerebral cortex.

[12]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[13]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[14]  Keith A. Johnson,et al.  Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain , 2012, The Journal of Neuroscience.

[15]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[16]  Charlotte M. Deane,et al.  The function of communities in protein interaction networks at multiple scales , 2009, BMC Systems Biology.

[17]  Mason A. Porter,et al.  Task-Based Core-Periphery Organization of Human Brain Dynamics , 2012, PLoS Comput. Biol..

[18]  Ajay Mehra The Development of Social Network Analysis: A Study in the Sociology of Science , 2005 .

[19]  Claudio Carpineto,et al.  Consensus Clustering Based on a New Probabilistic Rand Index with Application to Subtopic Retrieval , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[21]  Zhiwen Yu,et al.  Graph-based consensus clustering for class discovery from gene expression data , 2007, Bioinform..

[22]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[23]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[25]  Hiroshi Fukuda,et al.  The Overlapping Community Structure of Structural Brain Network in Young Healthy Individuals , 2011, PloS one.

[26]  O. Sporns,et al.  High-cost, high-capacity backbone for global brain communication , 2012, Proceedings of the National Academy of Sciences.

[27]  Mason A. Porter,et al.  Robust Detection of Dynamic Community Structure in Networks , 2012, Chaos.

[28]  V. Traag,et al.  Community detection in networks with positive and negative links. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[30]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[32]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[33]  Roger Guimerà,et al.  Cartography of complex networks: modules and universal roles , 2005, Journal of statistical mechanics.

[34]  Jean-Charles Delvenne,et al.  Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit , 2011, PloS one.

[35]  R. Lambiotte,et al.  Random Walks, Markov Processes and the Multiscale Modular Organization of Complex Networks , 2008, IEEE Transactions on Network Science and Engineering.

[36]  Jean-Charles Delvenne,et al.  Stability of graph communities across time scales , 2008, Proceedings of the National Academy of Sciences.

[37]  Patric Hagmann,et al.  Mapping the human connectome at multiple scales with diffusion spectrum MRI , 2012, Journal of Neuroscience Methods.

[38]  Jukka-Pekka Onnela,et al.  Taxonomies of networks from community structure. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Stacy Williams,et al.  Dynamical clustering of exchange rates , 2009 .

[40]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Paul A. Bates,et al.  Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis , 2006, BMC Bioinformatics.

[42]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[44]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[45]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[46]  Alan C. Evans,et al.  Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. , 2009, Cerebral cortex.

[47]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[48]  P. Willett,et al.  Combining multiple classifications of chemical structures using consensus clustering. , 2012, Bioorganic & medicinal chemistry.

[49]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[50]  Mary E. Meyerand,et al.  The effect of scan length on the reliability of resting-state fMRI connectivity estimates , 2013, NeuroImage.

[51]  Anil K. Jain,et al.  Clustering ensembles: models of consensus and weak partitions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  A Delmotte,et al.  Protein multi-scale organization through graph partitioning and robustness analysis: application to the myosin–myosin light chain interaction , 2011, Physical biology.

[53]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[54]  Renaud Lambiotte,et al.  Multi-scale modularity in complex networks , 2010, 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks.

[55]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[56]  Olaf Sporns,et al.  Weight-conserving characterization of complex functional brain networks , 2011, NeuroImage.

[57]  P. Ronhovde,et al.  Multiresolution community detection for megascale networks by information-based replica correlations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  J. Rapoport,et al.  Simple models of human brain functional networks , 2012, Proceedings of the National Academy of Sciences.

[59]  Nick S. Jones,et al.  Dynamic communities in multichannel data: an application to the foreign exchange market during the 2007-2008 credit crisis. , 2008, Chaos.

[60]  Benjamin H. Good,et al.  Performance of modularity maximization in practical contexts. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[62]  Mason A. Porter,et al.  Core-Periphery Organisation of Human Brain Dynamics , 2012 .

[63]  Kevin Murphy,et al.  The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? , 2009, NeuroImage.

[64]  Jean-Charles Delvenne,et al.  Flow graphs: interweaving dynamics and structure , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  C. Lee Giles,et al.  Self-Organization and Identification of Web Communities , 2002, Computer.

[66]  M. V. D. Heuvel,et al.  Exploring the brain network: A review on resting-state fMRI functional connectivity , 2010, European Neuropsychopharmacology.

[67]  L. Cammoun,et al.  The Connectome Mapper: An Open-Source Processing Pipeline to Map Connectomes with MRI , 2012, PloS one.

[68]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[69]  Simon W. Moore,et al.  Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits , 2010, PLoS Comput. Biol..