Interaction between light and sound

Sound waves can modulate light in amplitude and phase, deflect it, focus it, or shift its frequency. Light can render acoustic images visible or provide detailed information on the thermal vibrations in solids and liquids. Diffraction of light waves by sound waves takes several different forms, depending on the two wavelengths and the dimensions of the interaction region. An analysis and description of these different forms is given, followed by a detailed discussion of a wide variety of applications, including signal processing devices, spectrum analyzers, television displays, image translators, memories, and the conversion of light into sound.

[1]  H. Cummins,et al.  Single sideband modulation of coherent light by Bragg reflection from acoustical waves , 1963 .

[2]  R. Dixon,et al.  Acoustic light modulators using optical heterodyne mixing , 1967 .

[3]  A. Demaria,et al.  CONTINUOUSLY‐VARIABLE ULTRASONIC‐OPTICAL DELAY LINE , 1966 .

[4]  E. I. Gordon,et al.  A review of acoustooptical deflection and modulation devices , 1966 .

[5]  R. Adler,et al.  DIRECT OBSERVATION OF OPTICALLY INDUCED GENERATION AND AMPLICATION OF SOUND , 1964 .

[6]  Richard L. Fork,et al.  LOCKING OF He–Ne LASER MODES INDUCED BY SYNCHRONOUS INTRACAVITY MODULATION , 1964 .

[7]  G. Danielson,et al.  Internal laser modulation by acoustic lens-like effects , 1966 .

[8]  E. Gordon Figure of merit for acousto-optical deflection and modulation devices , 1966 .

[9]  L. Brillouin Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l'agitation thermique , 1922 .

[10]  L. B. Lambert Wide-Band, Instantaneous Spectrum Analyzers Employing Delay-Line Light Modulators , 1962 .

[11]  D. M. Robinson,et al.  The Supersonic Light Control and Its Application to Television with Special Reference to the Scophony Television Receiver , 1939, Proceedings of the IRE.

[12]  René Lucas,et al.  Propriétés optiques des milieux solides et liquides soumis aux vibrations élastiques ultra sonores , 1932 .

[13]  C. Burton Crumly,et al.  LASER MODE LOCKING BY AN EXTERNAL DOPPLER CELL , 1965 .

[14]  J. S. Gerig,et al.  A simple optical filter for chirp radar , 1964 .

[15]  Calvin F. Quate,et al.  Interaction of light and microwave sound , 1965 .

[16]  R. Adler,et al.  A television display using acoustic deflection and modulation of coherent light , 1966 .

[17]  A. Korpel,et al.  Measurement of light-sound interaction efficiencies in solids , 1965 .

[18]  C. Townes,et al.  Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves , 1964 .

[19]  P. K. Tien,et al.  Parametric Amplification and Frequency Mixing in Propagating Circuits , 1958 .

[20]  K. Nassau,et al.  ELASTIC WAVE PROPAGATION IN LITHIUM NIOBATE , 1965 .

[21]  P. Debye,et al.  On the Scattering of Light by Supersonic Waves. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[22]  CONVERSION OF LIGHT TO SOUND BY ELECTROSTRICTIVE MIXING IN SOLIDS , 1966 .

[23]  Anthony E. Siegman,et al.  FREQUENCY TRANSLATION OF AN He–Ne LASER'S OUTPUT FREQUENCY BY ACOUSTIC OUTPUT COUPLING INSIDE THE RESONANT CAVITY , 1964 .

[24]  A. Korpel VISUALIZATION OF THE CROSS SECTION OF A SOUND BEAM BY BRAGG DIFFRACTION OF LIGHT , 1966 .

[25]  L. Slobodin Optical correlation technique , 1963 .

[26]  R. K. Erf,et al.  Application of Ultrasonic Standing Waves to the Generation of Optical‐Beam Scanning , 1964 .

[27]  C. Raman,et al.  The diffraction of light by sound waves of high frequency: Part II , 1935 .

[28]  An ultrasonic light deflection system , 1965 .

[29]  E. Gordon,et al.  Acoustic Beam Probing, Using Optical Techniques , 1965 .

[30]  G. Benedek,et al.  Brillouin scattering in liquids , 1965 .