Observed information in semi-parametric models

In many semi-parametric models, 'regular' parameters can be estimated by (semi-parametric) maximum likelihood estimators. The asymptotic theory for such estimators has been developed for a number of models of practical interest, and is similar to the asymptotic theory for maximum likelihood estimators in classical parametric models. In particular, the maximum likelihood estimators are asymptotically normal, where the inverse of the 'efficient Fisher information matrix' gives the asymptotic covariance matrix. The latter matrix is the Fisher information matrix corrected for the presence of an infinite-dimensional nuisance parameter. See, for example, Bickel et al. (1993) for an extensive review of information bounds. See Gill (1989), Chang (1990), Gu and Zhang (1993), Qin (1993), van der Laan (1993), Qin and Lawless (1994), van der Vaart (1994a; 1994b; 1994c; 1996), Murphy (1995), Gill et al. (1995), Huang (1996), Parner (1998), Qin and Wong (1996) and Mammen and van de Geer (1997) for results on the asymptotics of particular maximum likelihood estimators. It is natural to use the asymptotic normality of the estimator in order to form confidence intervals and test statistics. This requires an estimator of the standard error or equivalently of the Fisher information matrix. In some specific cases the efficient Fisher information matrix is of closed form. For example, under the assumption that the observation time is independent of the covariates, Huang (1996) gives an explicit estimator of the asymptotic variance in a proportional hazards model applied to current status data. Sometimes the 'efficient score' or 'efficient influence function' is explicit. Then since the efficient Fisher information matrix is the covariance of the efficient score function, one may estimate the

[1]  Richard D. Gill,et al.  A counting process approach to maximum likelihood estimation in frailty models , 1992 .

[2]  Myron N. Chang Weak Convergence of a Self-Consistent Estimator of the Survival Function with Doubly Censored Data , 1990 .

[3]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .

[4]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[5]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[6]  Terje Aven,et al.  A COUNTING PROCESS APPROACH TO REPLACEMENT MODELS , 1987 .

[7]  Susan A. Murphy,et al.  MLE in the proportional odds model , 1996 .

[8]  R. Gill Non- and semi-parametric maximum likelihood estimators and the Von Mises method , 1986 .

[9]  Jing Qin,et al.  Empirical Likelihood in Biased Sample Problems , 1993 .

[10]  A. V. D. Vaart,et al.  Maximum Likelihood Estimation with Partially Censored Data , 1994 .

[11]  K. Roeder,et al.  A Semiparametric Mixture Approach to Case-Control Studies with Errors in Covariables , 1996 .

[12]  J. Klein,et al.  Statistical Models Based On Counting Process , 1994 .

[13]  J. Qin,et al.  Empirical likelihood in a semi-parametric model , 1996 .

[14]  Susan A. Murphy,et al.  Semiparametric likelihood ratio inference , 1997 .

[15]  Susan A. Murphy,et al.  Semiparametric Mixtures in Case-Control Studies , 2001 .

[16]  Lin Li,et al.  Asymptotic Properties of Self-Consistent Estimators with Doubly-Censored Data , 2001 .

[17]  Erik T. Parner,et al.  Asymptotic theory for the correlated gamma-frailty model , 1998 .

[18]  Sara van de Geer,et al.  Penalized quasi-likelihood estimation in partial linear models , 1997 .

[19]  A. V. D. Vaart,et al.  Efficient maximum likelihood estimation in semiparametric mixture models , 1996 .

[20]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[21]  Susan A. Murphy,et al.  Asymptotic Theory for the Frailty Model , 1995 .

[22]  B. Yandell,et al.  Automatic Smoothing of Regression Functions in Generalized Linear Models , 1986 .

[23]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[24]  M. J. van der Laan,et al.  Efficient and inefficient estimation in semiparametric models , 1995 .

[25]  MLE IN THE PROPORTIONAL ODDS MODEL , 1997 .

[26]  W. Wong,et al.  Profile Likelihood and Conditionally Parametric Models , 1992 .

[27]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[28]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[29]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .