Two possible approaches for ionospheric forecasting to be employed along with the IRI model
暂无分享,去创建一个
E. T. Senalp | Ersin Tulunay | Yurdanur Tulunay | Erdem Turker Senalp | Ibrahim Unal | All Yesil | Y. Tulunay | E. Tulunay | I. Unal | A. Yesil
[1] Dieter Bilitza,et al. International reference ionosphere , 1978 .
[2] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[3] E. T. Senalp,et al. A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps , 2008 .
[4] Mohammad Bagher Menhaj,et al. Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.
[5] L. Libin,et al. Forecasting of Ionospheric Critical Frequency Using Neural Networks , 2005, Chinese Journal of Space Science.
[6] L. Finch. A hybrid approach , 1998 .
[7] E. T. Senalp,et al. Performance of IRI‐based ionospheric critical frequency calculations with reference to forecasting , 2011 .
[8] E. T. Senalp,et al. Forecasting total electron content maps by neural network technique , 2006 .
[9] Ljiljana R. Cander,et al. Twenty‐four hour predictions of f0F2 using time delay neural networks , 2000 .
[10] E. T. Senalp,et al. An attempt to model the influence of the trough on HF communication by using neural networks , 2001 .
[11] T.,et al. Training Feedforward Networks with the Marquardt Algorithm , 2004 .
[12] E. T. Senalp,et al. Total electron content (TEC) forecasting by Cascade Modeling: A possible alternative to the IRI‐2001 , 2008 .
[13] Ebrahim H. Mamdani,et al. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..