Changepoints in times series of counts

In this article, we discuss the problem of testing for a changepoint in the structure of an integer‐valued time series. In particular, we consider a test statistic of cumulative sum type for general Poisson autoregressions of order 1. We investigate the asymptotic behaviour of conditional least‐squares estimates of the parameters in the presence of a changepoint. Then, we derive the asymptotic distribution of the test statistic under the hypothesis of no change, allowing for the calculation of critical values. We prove consistency of the test, that is, asymptotic power 1, and consistency of the corresponding changepoint estimate. As an application, we have a look at changepoint detection in daily epileptic seizure counts from a clinical study.

[1]  J. Steinebach,et al.  Delay time in monitoring jump changes in linear models , 2013 .

[2]  Claudia Kirch,et al.  Testing for parameter stability in nonlinear autoregressive models , 2012 .

[3]  Dag Tjøstheim,et al.  On weak dependence conditions for Poisson autoregressions , 2012 .

[4]  Michael H. Neumann Absolute regularity and ergodicity of Poisson count processes , 2011, 1201.1071.

[5]  Robert C. Jung,et al.  Convolution‐closed models for count time series with applications , 2011 .

[6]  Konstantinos Fokianos,et al.  Log-linear Poisson autoregression , 2011, J. Multivar. Anal..

[7]  C. Weiß INARCH(1) processes: Higher-order moments and jumps , 2010 .

[8]  Christian H. Weiß,et al.  The INARCH(1) Model for Overdispersed Time Series of Counts , 2010 .

[9]  K. Fokianos,et al.  Interventions in INGARCH processes , 2010 .

[10]  Murat Caner Testik,et al.  CUSUM Monitoring of First-Order Integer-Valued Autoregressive Processes of Poisson Counts , 2009 .

[11]  Dag Tjøstheim,et al.  Poisson Autoregression , 2008 .

[12]  Claudia Kirch,et al.  On the detection of changes in autoregressive time series, II. Resampling procedures , 2008 .

[13]  Christian H. Weiß,et al.  Controlling correlated processes of Poisson counts , 2007, Qual. Reliab. Eng. Int..

[14]  J. Steinebach,et al.  On the detection of changes in autoregressive time series I. Asymptotics , 2007 .

[15]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[16]  Harry Joe,et al.  Modelling Count Data Time Series with Markov Processes Based on Binomial Thinning , 2006 .

[17]  Tina Hviid Rydberg,et al.  BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time , 2000 .

[18]  B. M. Pötscher,et al.  Dynamic Nonlinear Econometric Models: Asymptotic Theory , 1997 .

[19]  Dawei Huang,et al.  Testing for a Change in the Parameter Values and Order of an Autoregressive Model , 1995 .

[20]  J. Zakoian Threshold heteroskedastic models , 1994 .

[21]  Jushan Bai,et al.  ON THE PARTIAL SUMS OF RESIDUALS IN AUTOREGRESSIVE AND MOVING AVERAGE MODELS , 1993 .

[22]  Lajos Horváth,et al.  Change in autoregressive processes , 1993 .

[23]  P S Albert,et al.  A two-state Markov mixture model for a time series of epileptic seizure counts. , 1991, Biometrics.

[24]  Reg Kulperger,et al.  On the residuals of autoregressive processes and polynomial regression , 1985 .

[25]  W. Philipp,et al.  Almost Sure Invariance Principles for Weakly Dependent Vector-Valued Random Variables , 1982 .

[26]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[27]  Walter Philipp,et al.  Almost Sure Invariance Principles for Partial Sums of Mixing $B$-Valued Random Variables , 1980 .

[28]  R. Rao Relations between Weak and Uniform Convergence of Measures with Applications , 1962 .

[29]  K. Fokianos Count Time Series Models , 2012 .

[30]  Joseph Tadjuidje Kamgaing,et al.  Changepoint tests for INARCH time series , 2011 .

[31]  Jürgen Franke,et al.  Weak Dependence of Functional INGARCH Processes , 2010 .

[32]  B. M. Pötscher,et al.  Dynamic Nonlinear Econometric Models , 1997 .

[33]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[34]  J. Franke,et al.  Conditional maximum likelihood estimates for INAR(1) processes and their application to modelling epileptic seizure counts , 1993 .