Metamodel-Based Global Optimization Methodologies for High Dimensional Expensive Black-box Problems

[1]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[2]  Devadatta M. Kulkarni,et al.  Hierarchical overlapping coordination for large-scale optimization by decomposition , 1999 .

[3]  Tao Jiang,et al.  Target Cascading in Optimal System Design , 2003, DAC 2000.

[4]  Manolis Papadrakakis,et al.  Structural optimization using evolution strategies and neural networks , 1998 .

[5]  G. Kroes,et al.  Chebyshev high-dimensional model representation (Chebyshev-HDMR) potentials: application to reactive scattering of H2 from Pt(111) and Cu(111) surfaces. , 2012, Physical chemistry chemical physics : PCCP.

[6]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.

[7]  Eliot Winer,et al.  Development of visual design steering as an aid in large-scale multidisciplinary design optimization. Part I: method development , 2002 .

[8]  H. Rabitz,et al.  Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. , 2006, The journal of physical chemistry. A.

[9]  N. Cressie Spatial prediction and ordinary kriging , 1988 .

[10]  C. Bloebaum,et al.  Development of visual design steering as an aid in large-scale multidisciplinary design optimization. Part II: method validation , 2002 .

[11]  Samuel Kaski,et al.  Dimensionality reduction by random mapping: fast similarity computation for clustering , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[12]  Donald R. Jones,et al.  Variable Screening in Metamodel Design by Cross-Validated Moving Least Squares Method , 2003 .

[13]  Hüseyin Kaya,et al.  A recursive algorithm for finding HDMR terms for sensitivity analysis , 2003 .

[14]  Kambiz Haji Hajikolaei,et al.  Adaptive Orthonormal Basis Functions for High Dimensional Metamodeling With Existing Sample Points , 2012, DAC 2012.

[15]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.

[16]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[17]  Farrokh Mistree,et al.  Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size , 1999 .

[18]  Panos Y. Papalambros,et al.  DECOMPOSITION ANALYSIS AND OPTIMIZATION OF AN AUTOMOTIVE POWERTRAIN DESIGN MODEL , 1999 .

[19]  Dinh Quoc Tran,et al.  Combining Lagrangian decomposition and excessive gap smoothing technique for solving large-scale separable convex optimization problems , 2011, Comput. Optim. Appl..

[20]  Eva Riccomagno,et al.  Experimental Design and Observation for Large Systems , 1996, Journal of the Royal Statistical Society: Series B (Methodological).

[21]  Raphael T. Haftka,et al.  Optimization and experiments , 1995 .

[22]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[23]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[24]  J. M. Gablonsky Direct version 2.0 user guide , 2001 .

[25]  Richard H. Byrd,et al.  A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .

[26]  Chris H. Q. Ding,et al.  Adaptive dimension reduction for clustering high dimensional data , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[27]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[28]  Cheng-Ho Tho,et al.  Crashworthiness Design Optimization Using Surrogate Models , 2007 .

[29]  G. Gary Wang,et al.  ADAPTIVE RESPONSE SURFACE METHOD - A GLOBAL OPTIMIZATION SCHEME FOR APPROXIMATION-BASED DESIGN PROBLEMS , 2001 .

[30]  Richard Baumgartner,et al.  Mapping high-dimensional data onto a relative distance plane - an exact method for visualizing and characterizing high-dimensional patterns , 2004, J. Biomed. Informatics.

[31]  Metin Demiralp,et al.  A factorized high dimensional model representation on the nodes of a finite hyperprismatic regular grid , 2005, Appl. Math. Comput..

[32]  G. Gary Wang,et al.  Design Optimization on "White-Box" Uncovered by Metamodeling , 2012 .

[33]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[34]  L. Watson,et al.  Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization , 1998 .

[35]  H. Rabitz,et al.  Practical Approaches To Construct RS-HDMR Component Functions , 2002 .

[36]  R. Grandhi,et al.  A global structural optimization technique using an interval method , 2001 .

[37]  Shahryar Rahnamayan,et al.  Cooperative Co-evolution with a new decomposition method for large-scale optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[38]  M. Alper Tunga Factorized form of the indexing HDMR method for multivariate data modeling , 2013, Math. Comput. Model..

[39]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[40]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[41]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[42]  Kemper Lewis,et al.  A method for using legacy data for metamodel-based design of large-scale systems , 2004 .

[43]  G. Gary Wang,et al.  Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions , 2010 .

[44]  Raphael T. Haftka,et al.  Global structural optimization of a stepped cantilever beam using quasi-separable decomposition , 2010 .

[45]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[46]  Panos Y. Papalambros,et al.  Optimal Partitioning and Coordination Decisions in Decomposition-Based Design , 2007, DAC 2007.

[47]  T. Simpson,et al.  Fuzzy clustering based hierarchical metamodeling for design space reduction and optimization , 2004 .

[48]  R. Srinivasan,et al.  A global sensitivity analysis tool for the parameters of multi-variable catchment models , 2006 .

[49]  D. Agrafiotis,et al.  Nonlinear mapping of massive data sets by fuzzy clustering and neural networks , 2001 .

[50]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[51]  G. Vanderplaats,et al.  Survey of Discrete Variable Optimization for Structural Design , 1995 .

[52]  M. Demiralp,et al.  Hybrid high dimensional model representation (HHDMR) on the partitioned data , 2006 .

[53]  M. Alper Tunga An approximation method to model multivariate interpolation problems: Indexing HDMR , 2011, Math. Comput. Model..

[54]  Herschel Rabitz,et al.  Multicut‐HDMR with an application to an ionospheric model , 2004, J. Comput. Chem..

[55]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[56]  Herschel Rabitz,et al.  High‐dimensional model representations generated from low order terms—lp‐RS‐HDMR , 2003, J. Comput. Chem..

[57]  Ruichen Jin,et al.  Analytical Metamodel-Based Global Sensitivity Analysis and Uncertainty Propagation for Robust Design , 2004 .

[58]  Yeh-Liang Hsu,et al.  A sequential approximation method using neural networks for engineering design optimization problems , 2003 .

[59]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[60]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[61]  Panos Y. Papalambros,et al.  Reduced representations of vector-valued coupling variables in decomposition-based design optimization , 2011 .

[62]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[63]  H. Lilliefors On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown , 1969 .

[64]  Dimitrios Gunopulos,et al.  Non-linear dimensionality reduction techniques for classification and visualization , 2002, KDD.

[65]  G. G. Wang,et al.  Design Space Reduction for Multi-Objective Optimization and Robust Design Optimization Problems , 2004 .

[66]  M. Alper Tunga,et al.  Introductory steps for an indexing based HDMR algorithm: lumping HDMR , 2008 .

[67]  H. Fang,et al.  Global response approximation with radial basis functions , 2006 .

[68]  Songqing Shan,et al.  Turning Black-Box Functions Into White Functions , 2011 .

[69]  G. Gary Wang,et al.  Trust Region based MPS Method for Global Optimization of High Dimensional Design Problems , 2012 .

[70]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[71]  Hongfei Teng,et al.  Cooperative Co-evolutionary Differential Evolution for Function Optimization , 2005, ICNC.

[72]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[73]  D. Eichmann More Test Examples For Nonlinear Programming Codes , 2016 .

[74]  Herschel Rabitz,et al.  Ratio control variate method for efficiently determining high‐dimensional model representations , 2006, J. Comput. Chem..

[75]  Kambiz Haji Hajikolaei,et al.  High Dimensional Model Representation With Principal Component Analysis , 2014 .

[76]  Panos G Georgopoulos,et al.  Correlation method for variance reduction of Monte Carlo integration in RS‐HDMR , 2003, J. Comput. Chem..

[77]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[78]  M. Alper Tunga,et al.  A Factorized High Dimensional Model Representation on the Partitioned Random Discrete Data , 2004 .

[79]  Panos Y. Papalambros,et al.  Optimal model-based decomposition of powertrain system design , 1995 .

[80]  Herschel Rabitz,et al.  Regularized random-sampling high dimensional model representation (RS-HDMR) , 2008 .

[81]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007 .

[82]  Hu Wang,et al.  Adaptive MLS-HDMR metamodeling techniques for high dimensional problems , 2011, Expert Syst. Appl..

[83]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[84]  Aoying Zhou,et al.  An adaptive and dynamic dimensionality reduction method for high-dimensional indexing , 2007, The VLDB Journal.

[85]  Herschel Rabitz,et al.  Efficient Implementation of High Dimensional Model Representations , 2001 .

[86]  J. Friedman Multivariate adaptive regression splines , 1990 .

[87]  X. Yao,et al.  Scaling up fast evolutionary programming with cooperative coevolution , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[88]  Juan J. Alonso,et al.  Improving the Performance of Design Decomposition Methods with POD , 2004 .

[89]  G. G. Wang,et al.  Metamodeling for High Dimensional Simulation-Based Design Problems , 2010 .

[90]  Liqun Wang,et al.  A Random-Discretization Based Monte Carlo Sampling Method and its Applications , 2002 .

[91]  Shahryar Rahnamayan,et al.  Toward effective initialization for large-scale search spaces , 2009 .

[92]  D. Sofge,et al.  A blended population approach to cooperative coevolution for decomposition of complex problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[93]  Zoran Filipi,et al.  Target cascading in vehicle redesign: a class VI truck study , 2002 .

[94]  Christina Bloebaum,et al.  NON-HIERARCHIC SYSTEM DECOMPOSITION IN STRUCTURAL OPTIMIZATION , 1992 .

[95]  H. Mukai,et al.  A New Technique for Nonconvex Primal-Dual Decomposition of a Large-Scale Separable Optimization Problem , 1983, 1983 American Control Conference.

[96]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[97]  G. G. Wang,et al.  Mode-pursuing sampling method for global optimization on expensive black-box functions , 2004 .

[98]  Herschel Rabitz,et al.  Global uncertainty assessments by high dimensional model representations (HDMR) , 2002 .