Performance of convolutional codes in asynchronous CDMA communications under imperfect phase-tracking conditions

In this paper, the performance of short constraint length convolutional codes in imperfect phase tracking conditions is discussed. Convolutional codes are used to provide error protection to a particular user in an Asynchronous CDMA (A- CDMA) system undergoing slow Rician fading. Maximum likelihood decoding with a Viterbi algorithm recovers the information symbols. A Phase Locked Loop (PLL) depicting the variations in the phase error for abrupt phase changes in the input signal is considered. Analytical bounds, which are useful in predicting the performance of the A-CDMA system are derived and plotted for the cases of infinite and finite channel memory. The upper bounds on the unconditional Bit Error Rate (BER) with Viterbi decoding are derived and plotted for the various convolutional codes considered. The simulated BERs are found to agree well with their upper bounds.

[1]  M. Barton,et al.  Punctured convolutional codes for supporting PCS access to ATM networks , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[2]  Eon Gon Kim,et al.  Performance comparison for mobile multimedia CDMA system with various channel coding method , 2000, 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119).

[3]  C. Helstrom,et al.  Statistical theory of signal detection , 1968 .

[4]  J. W. Modestino,et al.  Convolutional Code Performance in the Rician Fading Channel , 1976, IEEE Trans. Commun..

[5]  Subbarayan Pasupathy,et al.  Performance of a coded multi-carrier DS-CDMA system in multi-path fading channels , 1995, Wirel. Pers. Commun..

[6]  John G. Proakis,et al.  Digital Communications , 1983 .

[7]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[8]  Zhenqiang Sun,et al.  Performance analysis of two rate punctured convolutional code scheme for wireless ATM networks , 2000, Proceedings Seventh International Conference on Parallel and Distributed Systems: Workshops.

[9]  Seokho Yoon,et al.  Analysis of an adaptive rate convolutionally coded multicarrier DS/CDMA system , 2001, IEEE Trans. Veh. Technol..

[10]  Iickho Song,et al.  A rate adaptive convolutional coding method for multicarrier DS/CDMA systems , 2000, MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155).

[11]  Pål K. Frenger,et al.  Code-spread CDMA using maximum free distance low-rate convolutional codes , 1998, IEEE Trans. Commun..

[12]  R. F. Ormondroyd,et al.  Performance of low-rate orthogonal convolutional codes in DS-CDMA applications , 1997 .

[13]  Vidhyacharan Bhaskar,et al.  Soft-Decision Decoding of Punctured Convolutional Codes in Asynchronous-CDMA Communications Under Perfect Phase-Tracking Conditions , 2006, Int. J. Wirel. Inf. Networks.

[14]  Ulrich K. Sorger,et al.  Interleaving for outer convolutional codes in DS-CDMA systems , 2000, IEEE Trans. Commun..

[15]  L. H. Charles Lee,et al.  New rate-compatible punctured convolutional codes for Viterbi decoding , 1994, IEEE Trans. Commun..

[16]  Tony Ottosson,et al.  Combined coding and spreading in CDMA systems using maximum free distance convolutional codes , 1998, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151).

[17]  J. M. Holtzman,et al.  Effect of tracking error on DS/CDMA successive interference cancellation , 1994, 1994 IEEE GLOBECOM. Communications: Communications Theory Mini-Conference Record,.

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  Che-Ho Wei,et al.  On the performance of rate 1/2 convolutional codes with QPSK on Rician fading channels , 1990 .

[20]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[21]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[22]  T. Ottosson,et al.  Code-spread CDMA using low-rate convolutional codes , 1998, 1988 IEEE 5th International Symposium on Spread Spectrum Techniques and Applications - Proceedings. Spread Technology to Africa (Cat. No.98TH8333).

[23]  Gordon L. Stüber,et al.  Nonlinear multiuser parameter estimation and tracking in CDMA systems , 2000, IEEE Trans. Commun..

[24]  Vidhyacharan Bhaskar,et al.  Adaptive rate coding using convolutional codes for asynchronous code division multiple access communications over slowly fading channels , 2005, Comput. Electr. Eng..

[25]  Vidhyacharan Bhaskar,et al.  Performance of punctured convolutional codes in asynchronous CDMA communications under perfect phase-tracking conditions , 2004, Comput. Electr. Eng..

[26]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[27]  Arne Svensson,et al.  Rate-compatible convolutional codes for multirate DS-CDMA systems , 1999, IEEE Trans. Commun..

[28]  R.A. Stirling-Gallacher,et al.  Performance of a OFDM-CDMA system with orthogonal convolutional coding and interference cancellation , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[29]  John D. Villasenor,et al.  Very low variable-rate convolutional codes for unequal error protection in DS-CDMA systems , 1997, IEEE Trans. Commun..

[30]  Dariush Divsalar,et al.  Some new twists to problems involving the Gaussian probability integral , 1998, IEEE Trans. Commun..

[31]  Masoud Salehi,et al.  Contemporary Communication Systems Using MATLAB , 1999 .

[32]  Jun Yang,et al.  Optimal coding rate of punctured convolutional codes in multiservice wireless cellular systems , 1999 .