The analysis and overview of semantic image interpretation

Currently, the main challenge of CBIR is bridging the so-called semantic gap. A question emerges whether visual similarity is reliable for grading semantic similarity and how complex the problem of semantic interpretation of an image really is? Using the UML class diagram, a model for semantic interpretation of general images is presented. A general model for still images of outdoor and indoor scenes is defined, independent of domain the image belongs to and the objects it contains. Analysis and visual presentation of key model elements aid in observing the problem in whole and simplify the process of finding new solutions.

[1]  Paul H. Lewis,et al.  SCULPTEUR: Towards a New Paradigm for Multimedia Museum Information Handling , 2003, SEMWEB.

[2]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  Otthein Herzog,et al.  Picturefinder: Description Logics for Semantic Image Retrieval , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[4]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jonathon S. Hare,et al.  Semantic facets: an in-depth analysis of a semantic image retrieval system , 2007, CIVR '07.

[8]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[9]  Dan I. Moldovan,et al.  Exploiting ontologies for automatic image annotation , 2005, SIGIR '05.

[10]  Jonathon S. Hare,et al.  Mind the gap: another look at the problem of the semantic gap in image retrieval , 2006, Electronic Imaging.

[11]  Naphtali Rishe,et al.  Content-based image retrieval , 1995, Multimedia Tools and Applications.

[12]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Jonathon S. Hare,et al.  The Reality of the Semantic Gap in Image Retrieval , 2006 .

[14]  Jianping Fan,et al.  Mining Multilevel Image Semantics via Hierarchical Classification , 2008, IEEE Transactions on Multimedia.