Leishmania infantum lipophosphoglycan induced-Prostaglandin E2 production in association with PPAR-γ expression via activation of Toll like receptors-1 and 2

[1]  N. Inestrosa,et al.  PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation , 2017, Biological reviews of the Cambridge Philosophical Society.

[2]  F. Cunha,et al.  Leishmania infantum Parasites Subvert the Host Inflammatory Response through the Adenosine A2A Receptor to Promote the Establishment of Infection , 2017, Front. Immunol..

[3]  Junfeng Zhang,et al.  A novel pyrazole‐containing indolizine derivative suppresses NF‐&kgr;B activation and protects against TNBS‐induced colitis via a PPAR‐&ggr;‐dependent pathway , 2017, Biochemical pharmacology.

[4]  P. Volf,et al.  In Vitro Inhibition of Leishmania Attachment to Sandfly Midguts and LL-5 Cells by Divalent Metal Chelators, Anti-gp63 and Phosphoglycans. , 2017, Protist.

[5]  P. Bozza,et al.  Anti-parasite therapy drives changes in human visceral leishmaniasis-associated inflammatory balance , 2017, Scientific Reports.

[6]  M. Wilson,et al.  Lipid bodies accumulation in Leishmania infantum‐infected C57BL/6 macrophages , 2017, Parasite immunology.

[7]  P. Bozza,et al.  Resolvin D1 drives establishment of Leishmania amazonensis infection , 2017, Scientific Reports.

[8]  Raju C Reddy,et al.  PPAR Agonists for the Prevention and Treatment of Lung Cancer , 2017, PPAR research.

[9]  M. Si-Tahar,et al.  FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection , 2017, Front. Immunol..

[10]  H. Castro-Faria-Neto,et al.  Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARγ dependent mechanisms. , 2017, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[11]  A. Abdoli,et al.  Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: a review , 2016, Pathogens and global health.

[12]  A. Torrecilhas,et al.  Lipophosphoglycans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do Not Affect Sand Fly Infection , 2016, PLoS neglected tropical diseases.

[13]  Saikat Majumder,et al.  Leishmania donovani-Induced Prostaglandin E2 Generation Is Critically Dependent on Host Toll-Like Receptor 2–Cytosolic Phospholipase A2 Signaling , 2016, Infection and Immunity.

[14]  A. Da-Cruz,et al.  Cytotoxic cell involvement in human cutaneous leishmaniasis: assessments in active disease, under therapy and after clinical cure , 2016, Parasite immunology.

[15]  C. Brodskyn,et al.  Degranulating Neutrophils Promote Leukotriene B4 Production by Infected Macrophages To Kill Leishmania amazonensis Parasites , 2016, The Journal of Immunology.

[16]  P. Bousso,et al.  Induction, Propagation, and Activity of Host Nitric Oxide: Lessons from Leishmania Infection. , 2015, Trends in parasitology.

[17]  A. Weyrich,et al.  A PPAR&ggr; AGONIST ENHANCES BACTERIAL CLEARANCE THROUGH NEUTROPHIL EXTRACELLULAR TRAP FORMATION AND IMPROVES SURVIVAL IN SEPSIS , 2015, Shock.

[18]  A. Torrecilhas,et al.  Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases , 2015, Journal of immunology research.

[19]  J. M. Sforcin,et al.  Nitric Oxide and Brazilian Propolis Combined Accelerates Tissue Repair by Modulating Cell Migration, Cytokine Production and Collagen Deposition in Experimental Leishmaniasis , 2015, PloS one.

[20]  P. Bozza,et al.  Arginase I, polyamine, and prostaglandin E2 pathways suppress the inflammatory response and contribute to diffuse cutaneous leishmaniasis. , 2015, The Journal of infectious diseases.

[21]  G. Boons,et al.  Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate? , 2015, Front. Cell. Infect. Microbiol..

[22]  A. Torrecilhas,et al.  Leishmania enriettii: biochemical characterisation of lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) and infectivity to Cavia porcellus , 2015, Parasites & Vectors.

[23]  J. C. Miranda,et al.  Prostaglandin E2/Leukotriene B4 balance induced by Lutzomyia longipalpis saliva favors Leishmania infantum infection , 2014, Parasites & Vectors.

[24]  Z. Qin,et al.  Lipoteichoic Acid (LTA) and Lipopolysaccharides (LPS) from Periodontal Pathogenic Bacteria Facilitate Oncogenic Herpesvirus Infection within Primary Oral Cells , 2014, PloS one.

[25]  U. Lopes,et al.  Understanding the Mechanisms Controlling Leishmania amazonensis Infection In Vitro: The Role of LTB4 Derived From Human Neutrophils , 2014, The Journal of infectious diseases.

[26]  A. Rojas-Bernabé,et al.  Leishmania mexicana lipophosphoglycan activates ERK and p38 MAP kinase and induces production of proinflammatory cytokines in human macrophages through TLR2 and TLR4 , 2014, Parasitology.

[27]  Marina Sergeeva,et al.  Peroxisome proliferator-activated receptor (PPAR)β/δ, a possible nexus of PPARα- and PPARγ-dependent molecular pathways in neurodegenerative diseases: Review and novel hypotheses , 2013, Neurochemistry International.

[28]  A. Krasnov,et al.  CpG- and LPS-activated MAPK signaling in in vitro cultured salmon (Salmo salar) mononuclear phagocytes. , 2013, Fish & shellfish immunology.

[29]  J. Arthur,et al.  Dectin-1 Regulates IL-10 Production via a MSK1/2 and CREB Dependent Pathway and Promotes the Induction of Regulatory Macrophage Markers , 2013, PloS one.

[30]  R. Soares,et al.  Two biochemically distinct lipophosphoglycans from Leishmania braziliensis and Leishmania infantum trigger different innate immune responses in murine macrophages , 2013, Parasites & Vectors.

[31]  V. Hernández-Ramírez,et al.  PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana , 2013, BioMed research international.

[32]  R. Soares,et al.  Glycoconjugates in New World species of Leishmania: polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts. , 2012, Biochimica et biophysica acta.

[33]  A. Descoteaux,et al.  Leishmania promastigotes: building a safe niche within macrophages , 2012, Front. Cell. Inf. Microbio..

[34]  M. Bozza,et al.  Heme Oxygenase-1 Promotes the Persistence of Leishmania chagasi Infection , 2012, The Journal of Immunology.

[35]  R. Soares,et al.  Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: Modulation of Innate Immune System and Variations in Carbohydrate Structure , 2012, PLoS neglected tropical diseases.

[36]  M. Chan,et al.  Review Article Peroxisome Proliferator-activated Receptor-γ-mediated Polarization of Macrophages in Leishmania Infection 2. Resistance versus Susceptibility , 2022 .

[37]  P. Bozza,et al.  Lipid body function in eicosanoid synthesis: an update. , 2011, Prostaglandins, leukotrienes, and essential fatty acids.

[38]  P. Pimenta,et al.  Leishmania infantum: Lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts. , 2011, International journal for parasitology.

[39]  J. C. Miranda,et al.  Lutzomyia longipalpis Saliva Triggers Lipid Body Formation and Prostaglandin E2 Production in Murine Macrophages , 2010, PLoS neglected tropical diseases.

[40]  A. Ukil,et al.  MAPK‐directed phosphatases preferentially regulate pro‐ and anti‐inflammatory cytokines in experimental visceral leishmaniasis: involvement of distinct protein kinase C isoforms , 2010, Journal of leukocyte biology.

[41]  L. Gutiérrez-Kobeh,et al.  Leishmania mexicana lipophosphoglycan differentially regulates PKCα‐induced oxidative burst in macrophages of BALB/c and C57BL/6 mice , 2010, Parasite immunology.

[42]  L. Foster,et al.  An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages , 2010, Journal of Cell Science.

[43]  L. Nagy,et al.  Mycobacterium bovis Bacillus Calmette-Guérin Infection Induces TLR2-Dependent Peroxisome Proliferator-Activated Receptor γ Expression and Activation: Functions in Inflammation, Lipid Metabolism, and Pathogenesis1 , 2009, The Journal of Immunology.

[44]  M. Chan,et al.  Long-term use of an antiinflammatory, curcumin, suppressed type 1 immunity and exacerbated visceral leishmaniasis in a chronic experimental model , 2008, Laboratory Investigation.

[45]  C. Brodskyn,et al.  Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with Leishmania amazonensis , 2008, Journal of leukocyte biology.

[46]  Felipe F. Tuon,et al.  Toll-Like Receptors and Leishmaniasis , 2007, Infection and Immunity.

[47]  Frank Brombacher,et al.  Macrophage-specific PPARγ controls alternative activation and improves insulin resistance , 2007, Nature.

[48]  A. Descoteaux,et al.  RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon–γ‐primed macrophages , 2006, European journal of immunology.

[49]  M. Peters-Golden,et al.  Eicosanoids: mediators and therapeutic targets in fibrotic lung disease. , 2005, Clinical science.

[50]  R. Soares,et al.  Leishmania braziliensis: a novel mechanism in the lipophosphoglycan regulation during metacyclogenesis. , 2005, International journal for parasitology.

[51]  R. Gazzinelli,et al.  Role of the Toll/interleukin‐1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parasites , 2004, Immunological reviews.

[52]  T. Baldwin,et al.  MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll‐like receptor 2 signaling , 2003, European journal of immunology.

[53]  I. Becker,et al.  Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. , 2003, Molecular and biochemical parasitology.

[54]  R. Vishwakarma,et al.  Alkylacylglycerolipid domain of GPI molecules of Leishmania is responsible for inhibition of PKC-mediated c-fos expression Published, JLR Papers in Press, January 1, 2003. DOI 10.1194/jlr.M200296-JLR200 , 2003, Journal of Lipid Research.

[55]  I. C. Almeida,et al.  Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. , 2002, Molecular and biochemical parasitology.

[56]  A. Cunningham Parasitic adaptive mechanisms in infection by leishmania. , 2002, Experimental and molecular pathology.

[57]  M. Panaro,et al.  Nitric oxide production by Leishmania-infected macrophages and modulation by cytokines and prostaglandins. , 2001, Parassitologia.

[58]  J. Nájera Malaria control: achievements, problems and strategies. , 2001, Parassitologia.

[59]  S. Turco,et al.  Glycoconjugate structures of parasitic protozoa. , 2001, Glycobiology.

[60]  G. Feng,et al.  Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macrophage IL-12 production by targeting ERK MAP , 1999, Journal of immunology.

[61]  M. Ferguson,et al.  The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. , 1999, Journal of cell science.

[62]  M. Desjardins,et al.  Inhibition of Phagolysosomal Biogenesis by the Leishmania Lipophosphoglycan , 1997, The Journal of experimental medicine.

[63]  I. C. Almeida,et al.  Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages. , 1997, Journal of immunology.

[64]  R. Epand,et al.  Transbilayer inhibition of protein kinase C by the lipophosphoglycan from Leishmania donovani. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. McConville,et al.  Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan , 1995, The Journal of experimental medicine.

[66]  G. Matlashewski,et al.  Leishmania donovani lipophosphoglycan selectively inhibits signal transduction in macrophages. , 1991, Journal of immunology.

[67]  B. Ryffel,et al.  Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by Mycobacterium bovis BCG infection. , 2014, Biochimica et biophysica acta.

[68]  A. Daugschies,et al.  Eicosanoids in parasites and parasitic infections. , 2000, Advances in parasitology.