Extraction of Affine Invariant Features Using Fractal

An approach based on fractal is presented for extracting affine invariant features. Central projection transformation is employed to reduce the dimensionality of the original input pattern, and general contour (GC) of the pattern is derived. Affine invariant features cannot be extracted from GC directly due to shearing. To address this problem, a group of curves (which are called shift curves) are constructed from the obtained GC. Fractal dimensions of these curves can readily be computed and constitute a new feature vector for the original pattern. The derived feature vector is used in question for pattern recognition. Several experiments have been conducted to evaluate the performance of the proposed method. Experimental results show that the proposed method can be used for object classification.

[1]  Hua Li,et al.  Moment invariants to affine transformation of colours , 2013, Pattern Recognit. Lett..

[2]  Alain Trémeau,et al.  Affine transforms between image space and color space for invariant local descriptors , 2013, Pattern Recognit..

[3]  Yeung Sam Hung,et al.  A subspace approach for matching 2D shapes under affine distortions , 2011, Pattern Recognit..

[4]  Xuelong Li,et al.  Geometric Distortion Insensitive Image Watermarking in Affine Covariant Regions , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[5]  Yuan F. Zheng,et al.  Image Registration Using Adaptive Polar Transform , 2009, IEEE Transactions on Image Processing.

[6]  Yong Yu,et al.  Radon Representation-Based Feature Descriptor for Texture Classification , 2009, IEEE Transactions on Image Processing.

[7]  Mohammad Reza Daliri,et al.  Robust symbolic representation for shape recognition and retrieval , 2008, Pattern Recognit..

[8]  Shijian Lu,et al.  Retrieval of machine-printed Latin documents through Word Shape Coding , 2008, Pattern Recognit..

[9]  Eam Khwang Teoh,et al.  2D Affine-Invariant Contour Matching Using B-Spline Model , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Kpalma Kidiyo,et al.  Affine Invariance Contour Descriptor Based on the Equal Area Normalization , 2007 .

[11]  Esa Rahtu,et al.  Affine invariant pattern recognition using multiscale autoconvolution , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Hamid Soltanian-Zadeh,et al.  Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms , 2005, IEEE Transactions on Image Processing.

[13]  Yuan Yan Tang,et al.  New method for feature extraction based on fractal behavior , 2002, Pattern Recognit..

[14]  Mahmoud I. Khalil,et al.  A Dyadic Wavelet Affine Invariant Function for 2D Shape Recognition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Wageeh Boles,et al.  Wavelet-based affine invariant representation: a tool for recognizing planar objects in 3D space , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  David Cyganski,et al.  A linear signal decomposition approach to affine invariant contour identification , 1995, Pattern Recognit..

[17]  Isaac Weiss,et al.  Geometric invariants and object recognition , 1993, International Journal of Computer 11263on.

[18]  Wesley E. Snyder,et al.  Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  K. Falconer Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[20]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[21]  Esa Rahtu,et al.  A multiscale framework for affine invariant pattern recognition and registration , 2007 .

[22]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[23]  Mahmoud I. Khalil,et al.  Affine invariants for object recognition using the wavelet transform , 2002, Pattern Recognit. Lett..

[24]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[25]  Bidyut Baran Chaudhuri,et al.  Texture Segmentation Using Fractal Dimension , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[27]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[28]  S. Krantz Fractal geometry , 1989 .