Scaling of the nonlinear response of the surface plasmon polariton at a metal/dielectric interface

Plasmonic systems involve interfaces containing metal and dielectric materials. In an effort to investigate the scaling of the nonlinear response of the surface plasmon polariton at a metal/dielectric interface, where the metal and dielectric present optical nonlinearity, we introduce a figure-of-merit that quantifies the contribution of the metal and the dielectric to the nonlinear response in this specific situation. In the case of self-action of the surface plasmon polariton for the gold/dielectric interface, we predict that the dielectric nonlinear response is dominant for strongly nonlinear dielectrics such as polydiacetylenes, chalcogenide glasses, or even semiconductors. The gold nonlinear response is dominant only in cases involving weakly nonlinear dielectrics such as silicon dioxide or aluminum oxide. We verify the relevance of the metric by investigating the process of optical switching via the third-order nonlinear response and discuss which gold/dielectric combinations have better switching behaviors.

[1]  Xiang Zhang,et al.  Subwavelength discrete solitons in nonlinear metamaterials. , 2007, Physical review letters.

[2]  Nonlinear long-range plasmonic waveguides , 2010 .

[3]  M. Fejer Nonlinear Optical Frequency Conversion , 1994 .

[4]  P. Lalanne,et al.  A microscopic view of the electromagnetic properties of sub-λ metallic surfaces , 2009 .

[5]  Railing Chang,et al.  Nonlinear dispersion relation for surface plasmon at a metal–Kerr medium interface , 2009 .

[6]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[7]  Yong Wang,et al.  Four-wave mixing microscopy of nanostructures , 2011 .

[8]  Truong X. Tran,et al.  Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals , 2013 .

[9]  R. Boyd,et al.  Measurement of the complex nonlinear optical response of a surface plasmon-polariton. , 2014, Optics letters.

[10]  G. Agrawal,et al.  Raman amplification of optical pulses in silicon nanowaveguides: Impact of spectral broadening of pump pulses , 2011 .

[11]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[12]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[13]  P. Hui,et al.  Exact surface plasmon dispersion relations in a linear-metal-nonlinear dielectric structure of arbitrary nonlinearity , 2009 .

[14]  Zi Jing Wong,et al.  Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials , 2013, Science.

[15]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[16]  S. Silvestri,et al.  Ultrafast optical parametric amplifiers , 2003 .

[17]  N. Rotenberg,et al.  Ultrafast Active Plasmonics on Gold Films , 2011 .

[18]  Manning,et al.  Nonlinear Optics for High-Speed Digital Information Processing. , 1999, Science.

[19]  Y. Kivshar,et al.  Nonlinear metal–dielectric nanoantennas for light switching and routing , 2012, 1205.6913.

[20]  D. Mihalache,et al.  Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface. , 1987, Optics letters.

[21]  François Hache,et al.  The optical kerr effect in small metal particles and metal colloids: The case of gold , 1988 .

[22]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[23]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[24]  Tanya M Monro,et al.  A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. , 2009, Optics express.

[25]  J. Krüger,et al.  Femtosecond laser-induced damage of gold films , 2007 .

[26]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[27]  R. Boyd,et al.  Self-phase-modulation of surface plasmon polaritons , 2014 .

[28]  Y. Kivshar,et al.  Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays. , 2012, Physical review letters.

[29]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[30]  Nikolay I. Zheludev The road ahead for active controllable and quantum metamaterials , 2010 .

[31]  R. Boyd,et al.  The third-order nonlinear optical susceptibility of gold , 2014 .

[32]  Y. Kivshar,et al.  Nonlinear plasmonic slot waveguides. , 2008, Optics express.

[33]  A. Bouhelier,et al.  Near-field second-harmonic generation by local field enhancement , 2002 .

[34]  Lukas Novotny,et al.  Surface-enhanced nonlinear four-wave mixing. , 2010, Physical review letters.

[35]  P Lalanne,et al.  Theory of surface plasmon generation at nanoslit apertures. , 2005, Physical review letters.

[36]  Sylvain Combrié,et al.  Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide. , 2009, Optics express.

[37]  Y. Kivshar,et al.  Nonlinear nanofocusing in tapered plasmonic waveguides. , 2010, Physical review letters.

[38]  Zach DeVito,et al.  Opt , 2017 .