The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits.

We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.

David Hewitt | Jolanta Miadlikowska | Damien Ertz | Zheng Wang | Karen Hansen | Robert Lücking | Cécile Gueidan | Gi-Ho Sung | Frank Kauff | Conrad L Schoch | Kerry O'Donnell | Gregory Bonito | Kristin Trippe | Mahdi Arzanlou | Marieka Gryzenhout | Francesc López-Giráldez | Burkhard Büdel | Valérie Hofstetter | Patrik Inderbitzin | Sung-Oui Suh | Jeffrey P Townsend | Barbara Robbertse | J. Rogers | D. Hillis | J. Townsend | D. Geiser | G. Griffith | J. Spatafora | F. López-Giráldez | D. Hewitt | G. Sung | B. Büdel | M. Wingfield | R. Lücking | F. Lutzoni | C. Gueidan | F. Kauff | C. Schoch | P. B. Matheny | P. Crous | P. Johnston | V. Hofstetter | A. Aptroot | H. Lumbsch | D. Ertz | J. Z. Groenewald | D. Pfister | J. Miadlikowska | R. Shoemaker | K. O’Donnell | P. Diederich | K. Hansen | K. Hosaka | A. Rossman | H. Sipman | J. Sugiyama | R. Yahr | J. Trappe | G. S. de Hoog | J. Kohlmeyer | B. Robbertse | B. Volkmann-Kohlmeyer | G. Bonito | E. Fraker | A. Rauhut | W. Untereiner | M. Cole | Z. Wang | R. Andrie | K. Trippe | L. M. Ciufetti | A. Wynns | B. Hodkinson | M. Arzanlou | Kristin R Peterson | M. Gryzenhout | S. Suh | M. Blackwell | L. Castlebury | P. Inderbitzin | L. Mostert | R. Summerbell | S. Stenroos | Alga Zuccaro | P. Dyer | P. Crittenden | David M Hillis | Emily Fraker | Brendan P Hodkinson | Alexandra Rauhut | Soili Stenroos | Paul Diederich | Rebecca Yahr | Junta Sugiyama | Gareth W Griffith | Joseph W Spatafora | Meredith Blackwell | Johannes Z Groenewald | Pedro W Crous | Alga Zuccaro | Lizel Mostert | Richard C Summerbell | David M Geiser | P Brandon Matheny | Rachael M Andrie | Linda M Ciufetti | Anja Wynns | G Sybren de Hoog | Donald H Pfister | Kristin Peterson | Michael J Wingfield | André Aptroot | Lisa A Castlebury | Amy Y Rossman | H Thorsten Lumbsch | Kentaro Hosaka | Jan Kohlmeyer | Brigitte Volkmann-Kohlmeyer | Harrie Sipman | Jack D Rogers | Robert A Shoemaker | Wendy Untereiner | Peter R Johnston | Paul S Dyer | Peter D Crittenden | Mariette S Cole | James M Trappe | François Lutzoni | G. Sybren de Hoog | Kristin R. Peterson | M. Wingfield | P. W. Crous | A. Zuccaro | H. Lumbsch | Robert A Shoemaker | Jeffrey P. Townsend | Rachael M Andrie | P. R. Johnston

[1]  D. Hibbett,et al.  Toward a phylogenetic classification of the Leotiomycetes based on rDNA data , 2006 .

[2]  O. Eriksson,et al.  Morphology and ultrastructure of Neolecta species. , 2003, Mycological research.

[3]  J. Guarro,et al.  A reassessment of cleistothecia as a taxonomic character. , 2007, Mycological research.

[4]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[5]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[6]  Mark Pagel,et al.  Major fungal lineages are derived from lichen symbiotic ancestors , 2022 .

[7]  J. Stone,et al.  Phylogenetics of Helotiales and Rhytismatales based on partial small subunit nuclear ribosomal DNA sequences , 2001 .

[8]  Jeffrey P Townsend,et al.  Profiling phylogenetic informativeness. , 2007, Systematic biology.

[9]  Michael Weiss,et al.  Phylogenomics reveal a robust fungal tree of life. , 2006, FEMS yeast research.

[10]  B. Hall,et al.  Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes , 2006, BMC Evolutionary Biology.

[11]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[12]  G. Haase Analysis of genes coding for small-subunit rRNA sequences in studying phylogenetics of dematiaceous fungal pathogens , 1996, Journal of clinical microbiology.

[13]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[14]  Conrad L Schoch,et al.  A phylogenomic analysis of the Ascomycota. , 2006, Fungal genetics and biology : FG & B.

[15]  D. Roberts Changes in the forms of invertase during the development of wheat leaves growing under cold-hardening and non-hardening conditions , 1982 .

[16]  D. Hibbett,et al.  Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.

[17]  J. Rogers,et al.  An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. , 2006, Mycologia.

[18]  J. Sugiyama Relatedness, phylogeny, and evolution of the fungi , 1998 .

[19]  Christopher W. Schadt,et al.  Seasonal Dynamics of Previously Unknown Fungal Lineages in Tundra Soils , 2003, Science.

[20]  Cymon J Cox,et al.  WASABI: an automated sequence processing system for multigene phylogenies. , 2007, Systematic biology.

[21]  A. Miller,et al.  Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta). , 2005, Molecular phylogenetics and evolution.

[22]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[23]  C. Raghukumar,et al.  Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean , 2004 .

[24]  Michael Weiss,et al.  A higher-level phylogenetic classification of the Fungi. , 2007, Mycological research.

[25]  O. Eriksson The families of bitunicate ascomycetes , 1981 .

[26]  T. Britton,et al.  Estimating divergence times in large phylogenetic trees. , 2007, Systematic biology.

[27]  D. Hibbett,et al.  Research Coordination Networks: a phylogeny for kingdom Fungi (Deep Hypha) , 2006, Mycologia.

[28]  G. S. Hoog,et al.  Fungi of the Antarctic: Evolution under extreme conditions , 2005 .

[29]  M. Wedin,et al.  The limitations of ancestral state reconstruction and the evolution of the ascus in the Lecanorales (lichenized Ascomycota). , 2008, Systematic biology.

[30]  E. S. Luttrell Taxonomy of the Pyrenomycetes , 1951 .

[31]  J. A. Nannfeldt Studien über die Morphologie und Systematik der nicht-lichenisierten inoperculaten Discomyceten , 1932 .

[32]  O. Eriksson,et al.  Supraordinal taxa of Ascomycota , 1997 .

[33]  A. Tehler,et al.  Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. , 1995, Science.

[34]  T. Taylor,et al.  Lichen-Like Symbiosis 600 Million Years Ago , 2005, Science.

[35]  David M. Geiser,et al.  Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. , 2006, Mycologia.

[36]  Marie-Christine Brun,et al.  TreeDyn: towards dynamic graphics and annotations for analyses of trees , 2006, BMC Bioinformatics.

[37]  W. Doolittle,et al.  Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  David L. Hawksworth,et al.  Ainsworth & Bisby's Dictionary of the Fungi , 1972 .

[39]  B D Hall,et al.  The origin of red algae: implications for plastid evolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[40]  E. Boa,et al.  Ainsworth and Bisby's Dictionary of the Fungi , 1998 .

[41]  Martin Grube,et al.  New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. , 2006, Mycologia.

[42]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[43]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[44]  P. Johnston,et al.  Structure and taxonomic significance of the ascus in the Coryneliaceae , 1989 .

[45]  M. Blackwell Minute mycological mysteries: the influence of arthropods on the lives of fungi , 1994 .

[46]  S. Redhead The genus Neolecta (Neolectaceae fam. nov., Lecanorales, Ascomycetes) in Canada , 1977 .

[47]  K. Hosaka,et al.  Early diverging Ascomycota: phylogenetic divergence and related evolutionary enigmas. , 2006, Mycologia.

[48]  G. S. de Hoog,et al.  Microcoding: the second step in DNA barcoding , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  Andrew P. Martin,et al.  Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. , 2008, Molecular phylogenetics and evolution.

[50]  J. W. Taylor,et al.  Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. , 1992, Molecular biology and evolution.

[51]  David Hewitt,et al.  A five-gene phylogeny of Pezizomycotina. , 2006, Mycologia.

[52]  S. Landvik Neolecta, a fruit-body-producing genus of the basal ascomycetes, as shown by SSU and LSU rDNA sequences , 1996 .

[53]  D. Hibbett,et al.  Toward a phylogenetic classification of the leotiomycetes based on rDNA data. , 2006, Mycologia.

[54]  T. G. Mitchell,et al.  Analysis of genes coding for small-subunit rRNA sequences in studying phylogenetics of dematiaceous fungal pathogens , 1995, Journal of clinical microbiology.

[55]  Joost A. Stalpers,et al.  Ainsworth and Bisby's dictionary of the fungi: 9th edition. , 1995 .

[56]  F. Kauff,et al.  Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. , 2002, Molecular phylogenetics and evolution.

[57]  H Philippe,et al.  An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. , 1999, Molecular biology and evolution.

[58]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[59]  G. F. Atkinson Contribution towards a Monograph of the Laboulbeniaceæ , 1898 .

[60]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[61]  Sung-Oui Suh,et al.  Molecular phylogeny of the cleistothecial fungi placed in Cephalothecaceae and Pseudeurotiaceae , 1999 .

[62]  E. S. Luttrell The Ascostromatic Ascomycetes , 1955 .

[63]  B. Hall,et al.  Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Jason E Stajich,et al.  A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis , 2006, BMC Evolutionary Biology.

[65]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[66]  D. Pfister,et al.  Phylogenetic origins of two cleistothecial fungi, Orbicula parietina and Lasiobolidium orbiculoides, within the operculate discomycetes. , 2005, Mycologia.

[67]  I. Brodo,et al.  Lichens of North America , 2002 .

[68]  L. Selbmann,et al.  Fungi at the edge of life: cryptendolithic black fungi from Antarctic desert , 2005 .

[69]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[70]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[71]  F. Kauff,et al.  Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota). , 2007, Molecular Phylogenetics and Evolution.

[72]  J. Spatafora,et al.  Marine fungal lineages in the Hypocreomycetidae. , 2007, Mycological research.

[73]  H. Lumbsch,et al.  Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens , 2005, Mycologia.

[74]  J. Spatafora,et al.  A multigene phylogeny of the Dothideomycetes using four nuclear loci , 2006 .