Rubber rolling over a sphere
暂无分享,去创建一个
[1] R. Montgomery,et al. G_2 and the "Rolling Distribution" , 2006, math/0612469.
[2] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .
[3] V. Kozlov. On the Integration Theory of Equations of Nonholonomic Mechanics , 2005, nlin/0503027.
[4] W. M. Oliva,et al. A note on the conservation of energy and volume in the setting of nonholonomic mechanical systems , 2004 .
[5] R. Montgomery,et al. Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2004, math-ph/0408005.
[6] Richard Cushman,et al. Global Aspects of Classical Integrable Systems , 2004 .
[7] A. Bloch,et al. Invariant measures of nonholonomic flows with internal degrees of freedom , 2003 .
[8] Yuri N. Fedorov,et al. Nonholonomic LR Systems as Generalized Chaplygin Systems with an Invariant Measure and Flows on Homogeneous Spaces , 2003, J. Nonlinear Sci..
[9] Alexey V. Borisov,et al. The Rolling Body Motion Of a Rigid Body on a Plane and a Sphere. Hierarchy of Dynamics , 2003, nlin/0306002.
[10] B. Jovanović. Some multidimensional integrable cases of nonholonomic rigid body dynamics , 2003, math-ph/0304012.
[11] A. Kilin,et al. The Rolling Motion of a Ball on a Surface. New Integrals and Hierarchy of Dynamics , 2003, nlin/0303024.
[12] A. Borisov,et al. Obstacle to the reduction of nonholonomic systems to the Hamiltonian form , 2002 .
[13] J. Koiller,et al. Moving frames for cotangent bundles , 2002, math-ph/0203014.
[14] A. Borisov,et al. Chaplygin's Ball Rolling Problem Is Hamiltonian , 2001 .
[15] T. Rybicki,et al. Reduction for locally conformal symplectic manifolds , 2001 .
[16] A. Wade. Conformal Dirac Structures , 2000, math/0101181.
[17] J. Cortés,et al. On the geometry of generalized Chaplygin systems , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] J. Cortés,et al. Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions , 2000, SIAM J. Control. Optim..
[19] Frans Cantrijn,et al. On almost-Poisson structures in nonholonomic mechanics , 1999 .
[20] Charles-Michel Marle,et al. Various approaches to conservative and nonconservative nonholonomic systems , 1998 .
[21] David Martín de Diego,et al. Reduction of nonholonomic mechanical systems with symmetries , 1998 .
[22] Jerrold E. Marsden,et al. Poisson reduction for nonholonomic mechanical systems with symmetry , 1998 .
[23] J. Sniatycki. Nonholonomic Noether theorem and reduction of symmetries , 1998 .
[24] Jerrold E. Marsden,et al. The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems , 1997 .
[25] V. Arnold,et al. Mathematical aspects of classical and celestial mechanics , 1997 .
[26] M. Levi. Composition of rotations and parallel transport , 1996 .
[27] Robert L. Bryant,et al. Rigidity of integral curves of rank 2 distributions , 1993 .
[28] J. Koiller. Reduction of some classical non-holonomic systems with symmetry , 1992 .
[29] V. Arnold,et al. Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .
[30] A. Veselov,et al. Integrable nonholonomic systems on Lie groups , 1988 .
[31] V. Arnold,et al. Dynamical Systems III , 1987 .
[32] Vera Rich,et al. USSR , 1977, Nature.
[33] J. Marsden,et al. Reduction of symplectic manifolds with symmetry , 1974 .
[34] I. Neĭmark,et al. Dynamics of Nonholonomic Systems , 1972 .
[35] D. Struik. Lectures on classical differential geometry , 1951 .
[36] J. Koiller,et al. Rubber Rolling: Geometry and Dynamics of 2-3-5 Distributions , 2008 .
[37] A. Borisov,et al. Isomorphism and Hamilton representation of some nonholonomic systems , 2007 .
[38] J. Marsden,et al. Dirac Structures and Implicit Lagrangian Systems in Electric Networks , 2006 .
[39] C. Marle. From momentum maps and dual pairs to symplectic and Poisson groupoids , 2005 .
[40] Jerrold E. Marsden,et al. The breadth of symplectic and poisson geometry : Festschrift in honor of Alan Weinstein , 2005 .
[41] A. J. van der Schaft,et al. Port-Hamiltonian systems: an approach to modelling and control of complex physical systems , 2004 .
[42] K. Lynch. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[43] Charles-Michel Marle,et al. On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints , 2003 .
[44] Yuri N. Fedorov. 2 1 2 A ug 2 00 3 Nonholonomic LR systems as Generalized Chaplygin systems with an Invariant Measure and Geodesic Flows on Homogeneous Spaces ∗ , 2003 .
[45] Jorge Cortés Monforte. Geometric, control and numerical aspects of nonholonomic systems , 2002 .
[46] Ivan Kupka,et al. The Non-Holonomic Mechanics , 2001 .
[47] Алексей Владимирович Борисов,et al. Гамильтоновость задачи Чаплыгина о качении шара@@@Chaplygin's Ball Rolling Problem Is Hamiltonian , 2001 .
[48] A. Kilin. THE DYNAMICS OF CHAPLYGIN BALL: THE QUALITATIVE AND COMPUTER ANALYSIS , 2001 .
[49] Jerrold E. Marsden,et al. Geometric mechanics, Lagrangian reduction, and nonholonomic systems , 2001 .
[50] P. Krishnaprasad,et al. Nonholonomic mechanical systems with symmetry , 1996 .
[51] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[52] S. Stanchenko. Non-holonomic Chaplygin systems☆ , 1989 .
[53] A. Veselov,et al. Currents on Lie groups with nonholonomic connection and integrable nonhamiltonian systems , 1986 .
[54] I. Vaisman. LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS , 1985 .
[55] I. Iliyev. On the conditions for the existence of the reducing chaplygin factor , 1985 .
[56] Raoul Bott,et al. The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[57] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[58] C. J. Blackall. On Volume Integral Invariants of Non-Holonomic Dynamical Systems , 1941 .
[59] E. Cartan,et al. Sur la représentation géométrique des systèmes matériels non holonomes , 1929 .
[60] E. Cartan,et al. Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre , 1910 .
[61] A. L.,et al. The Principles of Mechanics presented in a New Form , 1900, Nature.