Rubber rolling over a sphere

[1]  R. Montgomery,et al.  G_2 and the "Rolling Distribution" , 2006, math/0612469.

[2]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[3]  V. Kozlov On the Integration Theory of Equations of Nonholonomic Mechanics , 2005, nlin/0503027.

[4]  W. M. Oliva,et al.  A note on the conservation of energy and volume in the setting of nonholonomic mechanical systems , 2004 .

[5]  R. Montgomery,et al.  Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2004, math-ph/0408005.

[6]  Richard Cushman,et al.  Global Aspects of Classical Integrable Systems , 2004 .

[7]  A. Bloch,et al.  Invariant measures of nonholonomic flows with internal degrees of freedom , 2003 .

[8]  Yuri N. Fedorov,et al.  Nonholonomic LR Systems as Generalized Chaplygin Systems with an Invariant Measure and Flows on Homogeneous Spaces , 2003, J. Nonlinear Sci..

[9]  Alexey V. Borisov,et al.  The Rolling Body Motion Of a Rigid Body on a Plane and a Sphere. Hierarchy of Dynamics , 2003, nlin/0306002.

[10]  B. Jovanović Some multidimensional integrable cases of nonholonomic rigid body dynamics , 2003, math-ph/0304012.

[11]  A. Kilin,et al.  The Rolling Motion of a Ball on a Surface. New Integrals and Hierarchy of Dynamics , 2003, nlin/0303024.

[12]  A. Borisov,et al.  Obstacle to the reduction of nonholonomic systems to the Hamiltonian form , 2002 .

[13]  J. Koiller,et al.  Moving frames for cotangent bundles , 2002, math-ph/0203014.

[14]  A. Borisov,et al.  Chaplygin's Ball Rolling Problem Is Hamiltonian , 2001 .

[15]  T. Rybicki,et al.  Reduction for locally conformal symplectic manifolds , 2001 .

[16]  A. Wade Conformal Dirac Structures , 2000, math/0101181.

[17]  J. Cortés,et al.  On the geometry of generalized Chaplygin systems , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  J. Cortés,et al.  Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions , 2000, SIAM J. Control. Optim..

[19]  Frans Cantrijn,et al.  On almost-Poisson structures in nonholonomic mechanics , 1999 .

[20]  Charles-Michel Marle,et al.  Various approaches to conservative and nonconservative nonholonomic systems , 1998 .

[21]  David Martín de Diego,et al.  Reduction of nonholonomic mechanical systems with symmetries , 1998 .

[22]  Jerrold E. Marsden,et al.  Poisson reduction for nonholonomic mechanical systems with symmetry , 1998 .

[23]  J. Sniatycki Nonholonomic Noether theorem and reduction of symmetries , 1998 .

[24]  Jerrold E. Marsden,et al.  The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems , 1997 .

[25]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[26]  M. Levi Composition of rotations and parallel transport , 1996 .

[27]  Robert L. Bryant,et al.  Rigidity of integral curves of rank 2 distributions , 1993 .

[28]  J. Koiller Reduction of some classical non-holonomic systems with symmetry , 1992 .

[29]  V. Arnold,et al.  Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .

[30]  A. Veselov,et al.  Integrable nonholonomic systems on Lie groups , 1988 .

[31]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[32]  Vera Rich,et al.  USSR , 1977, Nature.

[33]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[34]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[35]  D. Struik Lectures on classical differential geometry , 1951 .

[36]  J. Koiller,et al.  Rubber Rolling: Geometry and Dynamics of 2-3-5 Distributions , 2008 .

[37]  A. Borisov,et al.  Isomorphism and Hamilton representation of some nonholonomic systems , 2007 .

[38]  J. Marsden,et al.  Dirac Structures and Implicit Lagrangian Systems in Electric Networks , 2006 .

[39]  C. Marle From momentum maps and dual pairs to symplectic and Poisson groupoids , 2005 .

[40]  Jerrold E. Marsden,et al.  The breadth of symplectic and poisson geometry : Festschrift in honor of Alan Weinstein , 2005 .

[41]  A. J. van der Schaft,et al.  Port-Hamiltonian systems: an approach to modelling and control of complex physical systems , 2004 .

[42]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[43]  Charles-Michel Marle,et al.  On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints , 2003 .

[44]  Yuri N. Fedorov 2 1 2 A ug 2 00 3 Nonholonomic LR systems as Generalized Chaplygin systems with an Invariant Measure and Geodesic Flows on Homogeneous Spaces ∗ , 2003 .

[45]  Jorge Cortés Monforte Geometric, control and numerical aspects of nonholonomic systems , 2002 .

[46]  Ivan Kupka,et al.  The Non-Holonomic Mechanics , 2001 .

[47]  Алексей Владимирович Борисов,et al.  Гамильтоновость задачи Чаплыгина о качении шара@@@Chaplygin's Ball Rolling Problem Is Hamiltonian , 2001 .

[48]  A. Kilin THE DYNAMICS OF CHAPLYGIN BALL: THE QUALITATIVE AND COMPUTER ANALYSIS , 2001 .

[49]  Jerrold E. Marsden,et al.  Geometric mechanics, Lagrangian reduction, and nonholonomic systems , 2001 .

[50]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[51]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[52]  S. Stanchenko Non-holonomic Chaplygin systems☆ , 1989 .

[53]  A. Veselov,et al.  Currents on Lie groups with nonholonomic connection and integrable nonhamiltonian systems , 1986 .

[54]  I. Vaisman LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS , 1985 .

[55]  I. Iliyev On the conditions for the existence of the reducing chaplygin factor , 1985 .

[56]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[57]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[58]  C. J. Blackall On Volume Integral Invariants of Non-Holonomic Dynamical Systems , 1941 .

[59]  E. Cartan,et al.  Sur la représentation géométrique des systèmes matériels non holonomes , 1929 .

[60]  E. Cartan,et al.  Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre , 1910 .

[61]  A. L.,et al.  The Principles of Mechanics presented in a New Form , 1900, Nature.

[62]  ESITheErwinSchrodingerInternational InstituteforMathematicalPhysics Boltzmanngasse9 A-1090Wien,Austria OntheGroupofDieomorphismsPreserving aLocallyConformalSymplecticStructure , 2022 .