Gaia Universe model snapshot - A statistical analysis of the expected contents of the Gaia catalogue

Context. This study has been developed in the framework of the computational simulations that are executed for the preparation of the ESA Gaia astrometric mission. Aims. We focus on describing the objects and characteristics that Gaia will potentially observe without taking into consideration instrumental effects (detection efficiency, observing errors). Methods. The theoretical Universe model prepared for the Gaia simulation has been statistically analysed at a given time. Ingredients of the model are described, with the greatest emplasis on the stellar content, the double and multiple stars, and variability. Results. In this simulation the errors have not yet been included. Hence we estimated the number of objects and their theoretical photometric, astrometric and spectroscopic characteristics if they are perfectly detected. We show that Gaia will be able to potentially observe 1.1 billion of stars (single or part of multiple star systems) of which about 2% are variable stars and 3% have one or two exoplanets. At the extragalactic level, observations will be potentially composed of several millions of galaxies, half a million to 1 million quasars and about 50 000 supernovae that will occur during the five years of the mission.

[1]  S. Ortolani,et al.  Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants , 2011, 1103.6104.

[2]  V. Ripepi,et al.  CORS Baade-Wesselink method in the Walraven photometric system: the period-radius and the period-luminosity relation of classical Cepheids , 2010, 1012.4376.

[3]  C. Fabricius,et al.  Gaia broad band photometry , 2010, 1008.0815.

[4]  Frédéric Arenou The simulated multiple stars , 2010 .

[5]  A. Karampelas,et al.  The Unresolved Galaxies with Gaia , 2010 .

[6]  P. Tanga Solar System science: Gaia and other forthcoming surveys , 2010 .

[7]  E. Bertin,et al.  SkyMaker: astronomical image simulations made easy. , 2010 .

[8]  J. Bochanski,et al.  M DWARFS IN SLOAN DIGITAL SKY SURVEY STRIPE 82: PHOTOMETRIC LIGHT CURVES AND FLARE RATE ANALYSIS , 2009, 0906.2030.

[9]  G. Carraro,et al.  THE PROPER MOTION OF THE MAGELLANIC CLOUDS. I. FIRST RESULTS AND DESCRIPTION OF THE PROGRAM , 2009 .

[10]  J. B. Laird,et al.  A KECK HIRES DOPPLER SEARCH FOR PLANETS ORBITING METAL-POOR DWARFS. II. ON THE FREQUENCY OF GIANT PLANETS IN THE METAL-POOR REGIME , 2009, 0902.4802.

[11]  G. Alecian,et al.  Empirical chemical stratifications in magnetic Ap stars: questions of uniqueness , 2009, 0901.0653.

[12]  A. Robin,et al.  The Milky Way's external disc constrained by 2MASS star counts , 2008, 0812.3739.

[13]  A. Subramaniam,et al.  Depth estimation of the Large and Small Magellanic Clouds , 2008, 0809.4362.

[14]  M. Haywood Radial mixing and the transition between the thick and thin Galactic discs , 2008, 0805.1822.

[15]  Cheongho Han,et al.  Near-Field Microlensing from Wide-Field Surveys , 2007, 0708.1215.

[16]  A. Krone-Martins,et al.  JStuff - a preliminary extragalactic model for the ESA-Gaia satellite simulation framework , 2007, Proceedings of the International Astronomical Union.

[17]  E. Kontizas,et al.  Towards a library of synthetic galaxy spectra and preliminary results of classification and parametrization of unresolved galaxies for Gaia. II , 2007, 0907.1671.

[18]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[19]  O. Kochukhov,et al.  Observations of pulsations in roAp stars , 2007, astro-ph/0702251.

[20]  L. Macri,et al.  A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant , 2006, astro-ph/0608211.

[21]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[22]  M. Perryman,et al.  The Three-Dimensional Universe with Gaia , 2005 .

[23]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[24]  R. Drimmel,et al.  A three-dimensional Galactic extinction model , 2003, astro-ph/0307273.

[25]  J. Kovalevsky Aberration in proper motions , 2003 .

[26]  F. Allard,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003, astro-ph/0302293.

[27]  R. Hilditch,et al.  Forty eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and Cloud distance , 2003, astro-ph/0411672.

[28]  V. Belokurov,et al.  Supernovae with ‘super‐Hipparcos’ , 2002, astro-ph/0210570.

[29]  Suzanne L. Hawley,et al.  The Palomar/MSU Nearby Star Spectroscopic Survey. IV. The Luminosity Function in the Solar Neighborhood and M Dwarf Kinematics , 2002 .

[30]  S. Tremaine,et al.  Maximum-likelihood method for estimating the mass and period distributions of extrasolar planets , 2001, astro-ph/0107482.

[31]  W. Pesnell,et al.  Theoretical Stellar Evolution , 2002 .

[32]  T. Beers,et al.  Extremely Metal-Poor Stars. VIII. High-Resolution, High Signal-to-Noise Ratio Analysis of Five Stars with [Fe/H] ≲ –3.5 , 2001, astro-ph/0107304.

[33]  Karel A. van der Hucht,et al.  The VIIth catalogue of galactic Wolf–Rayet stars , 2001 .

[34]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[35]  D. Zaritsky,et al.  The Tip of the Red Giant Branch Distance to the Large Magellanic Cloud , 1999, astro-ph/9911528.

[36]  G. Chabrier,et al.  Is Galactic Dark Matter White? , 1999, astro-ph/9901145.

[37]  V. Mohan,et al.  The Edge of the Galactic Disc , 1992, astro-ph/9210001.

[38]  Don A. VandenBerg,et al.  Oxygen-enhanced Models for Globular Cluster Stars. II. Isochrones and Luminosity Functions , 1992 .

[39]  M. Wood,et al.  Constraints on the age and evolution of the Galaxy from the white dwarf luminosity function , 1992 .

[40]  Philippe Veron,et al.  A catalogue of quasars and active nuclei: 12th edition , 1998 .

[41]  M. Feast,et al.  A period–luminosity–colour relation for Mira variables , 1989 .

[42]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[43]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[44]  D. Kurtz Rapidly Oscillating Ap Stars , 1982 .

[45]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .