Direct nonlinear control design: the virtual reference feedback tuning (VRFT) approach

This paper introduces the virtual reference feedback tuning (VRFT) approach for controller tuning in a nonlinear setup. VRFT is a data-based method that permits to directly select the controller based on data, with no need for a model of the plant. It is based on a global model reference optimization procedure and, therefore, does not require to access the plant for experiments many times so as to estimate the control cost gradient. For this reason, it represents a very appealing controller design methodology for many control applications.

[1]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[2]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[3]  Marco C. Campi On the convergence of minimum-variance directional-forgetting adaptive control scheme , 1992, Autom..

[4]  Eric Rogers,et al.  Output-feedback control of discrete linear repetitive processes , 1993 .

[5]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[6]  Håkan Hjalmarsson,et al.  Control of nonlinear systems using iterative feedback tuning , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[7]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[8]  Sergio M. Savaresi,et al.  Approximate I/O Feedback Linearization of Discrete-Time Non-Linear Systems via Virtual Input Direct Design , 1998, Autom..

[9]  H. Hjalmarsson Efficient tuning of linear multivariable controllers using iterative feedback tuning , 1999 .

[10]  Eric Rogers,et al.  Analysis of Linear Iterative Learning Control Schemes - A 2D Systems/Repetitive Processes Approach , 2000, Multidimens. Syst. Signal Process..

[11]  S. M. Savaresi,et al.  Virtual reference feedback tuning for two degree of freedom controllers , 2001, 2001 European Control Conference (ECC).

[12]  Sergio M. Savaresi,et al.  Approximate linearization via feedback - an overview , 2001, Autom..

[13]  Håkan Hjalmarsson,et al.  Iterative feedback tuning—an overview , 2002 .

[14]  László Gerencsér,et al.  RANDOMIZED ITERATIVE FEEDBACK TUNING , 2002 .

[15]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..

[16]  Sergio M. Savaresi,et al.  An Application of the Virtual Reference Feedback Tuning Method to a Benchmark Problem , 2003, Eur. J. Control.

[17]  Sergio M. Savaresi,et al.  Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach , 2004, IEEE Transactions on Control Systems Technology.

[18]  Håkan Hjalmarsson,et al.  Gradient approximations in iterative feedback tuning for multivariable processes , 2004 .

[19]  Dragan Kostic,et al.  Data-driven robot motion control design , 2004 .

[20]  M. Nakamoto An application of the virtual reference feedback tuning for an MIMO process , 2004, SICE 2004 Annual Conference.

[21]  Fabio Previdi,et al.  Closed-loop control of FES supported standing up and sitting down using Virtual Reference Feedback Tuning , 2005 .

[22]  Antonio Sala,et al.  VIRTUAL REFERENCE FEEDBACK TUNING IN RESTRICTED COMPLEXITY CONTROLLER DESIGN OF NON-MINIMUM PHASE SYSTEMS , 2005 .