Stability and error analysis of a class of high-order IMEX schemes for Navier-stokes equations with periodic boundary conditions

We construct high-order semi-discrete-in-time and fully discrete (with Fourier-Galerkin in space) schemes for the incompressible Navier-Stokes equations with periodic boundary conditions, and carry out corresponding error analysis. The schemes are of implicit-explicit type based on a scalar auxiliary variable (SAV) approach. It is shown that numerical solutions of these schemes are uniformly bounded without any restriction on time step size. These uniform bounds enable us to carry out a rigorous error analysis for the schemes up to fifth-order in a unified form, and derive global error estimates in $l^\infty(0,T;H^1)\cap l^2(0,T;H^2)$ in the two dimensional case as well as local error estimates in $l^\infty(0,T;H^1)\cap l^2(0,T;H^2)$ in the three dimensional case. We also present numerical results confirming our theoretical convergence rates and demonstrating advantages of higher-order schemes for flows with complex structures in the double shear layer problem.

[1]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[2]  Weiwei Sun,et al.  Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[3]  Jie Shen,et al.  Energy stability and convergence of SAV block-centered finite difference method for gradient flows , 2018, Math. Comput..

[4]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[5]  Jie Shen Long time stability and convergence for fully discrete nonlinear galerkin methods , 1990 .

[6]  gPAV-Based Unconditionally Energy-Stable Schemes for the Cahn-Hilliard Equation: Stability and Error Analysis , 2020, ArXiv.

[7]  Javier de Frutos,et al.  Postprocessing Finite-Element Methods for the Navier-Stokes Equations: The Fully Discrete Case , 2008, SIAM J. Numer. Anal..

[8]  G. Burton Sobolev Spaces , 2013 .

[9]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[10]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[11]  Zhiguo Yang,et al.  A Highly Efficient and Accurate New Scalar Auxiliary Variable Approach for Gradient Flows , 2020, SIAM J. Sci. Comput..

[12]  Xiaoming Wang,et al.  Long Time Stability of a Classical Efficient Scheme for Two-dimensional Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[13]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[14]  Ole H. Hald,et al.  Convergence of Fourier Methods for Navier-Stokes Equations , 1981 .

[15]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[16]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[17]  Suchuan Dong,et al.  Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable , 2018, J. Comput. Phys..

[18]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[19]  E Weinan,et al.  Convergence of Fourier methods for the Navier-Stokes equations , 1993 .

[20]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[21]  Ohannes A. Karakashian,et al.  On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .

[22]  Cheng Wang,et al.  Long Time Stability of High Order MultiStep Numerical Schemes for Two-Dimensional Incompressible Navier-Stokes Equations , 2016, SIAM J. Numer. Anal..

[23]  Steven A. Orszag,et al.  Structure and dynamics of homogeneous turbulence: models and simulations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  Xiaoming Wang,et al.  An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations , 2011, Numerische Mathematik.

[25]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[26]  G. S. Patterson,et al.  Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence , 1972 .

[27]  Olavi Nevanlinna,et al.  Multiplier techniques for linear multistep methods , 1981 .

[28]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[29]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[30]  Joseph Oliger,et al.  Stability of the Fourier method , 1977 .

[31]  M. Minion,et al.  Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .

[32]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[33]  Xiaoming Wang,et al.  Long-time dynamics of 2d double-diffusive convection: analysis and/of numerics , 2014, Numerische Mathematik.

[34]  Ruo Li,et al.  Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[35]  Maxim A. Olshanskii,et al.  Unconditional long-time stability of a velocity–vorticity method for the 2D Navier–Stokes equations , 2017, Numerische Mathematik.

[36]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[37]  Jie Shen,et al.  Error analysis of the SAV-MAC scheme for the Navier-Stokes equations , 2019, SIAM J. Numer. Anal..

[38]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[39]  Robert L. Pego,et al.  Stable discretization of magnetohydrodynamics in bounded domains , 2010 .

[40]  Jie Shen,et al.  Optimal error estimates for the scalar auxiliary variable finite-element schemes for gradient flows , 2020, Numerische Mathematik.