Determination of the NISTmAb Primary Structure

[1]  T. Sasagawa,et al.  High-performance liquid chromatography probes for posttranslationally modified amino acids. , 1984, Methods in enzymology.

[2]  Lysyl endopeptidase of Achromobacter lyticus. , 1994, Methods in enzymology.

[3]  John M. Lambert,et al.  Structural Characterization of a Recombinant Monoclonal Antibody by Electrospray Time-of-Flight Mass Spectrometry , 2005, Pharmaceutical Research.

[4]  R. Mhatre,et al.  Strategies for locating disulfide bonds in a monoclonal antibody via mass spectrometry. , 1999, Rapid communications in mass spectrometry : RCM.

[5]  Gerd R Kleemann,et al.  Optimization of a reversed-phase high-performance liquid chromatography/mass spectrometry method for characterizing recombinant antibody heterogeneity and stability. , 2006, Journal of chromatography. A.

[6]  Ying Zhang,et al.  A new tool for monoclonal antibody analysis , 2014, mAbs.

[7]  R. Jefferis,et al.  Relationship between the Papain Sensitivity of Human γG Immunoglobulins and their Heavy Chain Subclass , 1968, Nature.

[8]  E. Lederer,et al.  Determination of amino acid sequences in oligopeptides by mass spectrometry. I. The structure of fortuitine, an acyl-nonapeptide methyl ester , 1965 .

[9]  R. Bass,et al.  N-terminal Glutamate to Pyroglutamate Conversion in Vivo for Human IgG2 Antibodies , 2011, The Journal of Biological Chemistry.

[10]  J. Gergely,et al.  The papain susceptibility of IgG myeloma proteins of different heavy chain subclasses. , 1970, Immunochemistry.

[11]  C. Cohen,et al.  Isolation and characterization of a lysine-specific protease from Pseudomonas aeruginosa. , 1986, The Journal of biological chemistry.

[12]  G. Edelman,et al.  Immunological studies of human gamma-globulin. Relation of the precipitin lines of whole gamma-globulin to those of the fragments produced by papain. , 1960, The Journal of experimental medicine.

[13]  F. McLafferty,et al.  Separation/identification system for complex mixtures using mass separation and mass spectral characterization , 1978 .

[14]  R J Harris,et al.  Processing of C-terminal lysine and arginine residues of proteins isolated from mammalian cell culture. , 1995, Journal of chromatography. A.

[15]  Gerald M. Edelman,et al.  THE COVALENT STRUCTURE OF AN ENTIRE γG IMMUNOGLOBULIN MOLECULE , 1969 .

[16]  Lloyd M. Smith,et al.  Proteoform: a single term describing protein complexity , 2013, Nature Methods.

[17]  J. Gebler,et al.  Papain digestion of different mouse IgG subclasses as studied by electrospray mass spectrometry. , 2000, Journal of immunological methods.

[18]  C. Milstein,et al.  Disulphide Bridges of Immunoglobin G1 Heavy Chains , 1967, Nature.

[19]  C. Milstein,et al.  Variations in the S—S bridges of immunoglobins G: Interchain disulphide bridges of γG3 myeloma proteins , 1968 .

[20]  V. Katta,et al.  Detecting low level sequence variants in recombinant monoclonal antibodies , 2010, mAbs.

[21]  M. F. Bean,et al.  Characterization of disulfide bond position in proteins and sequence analysis of cystine-bridged peptides by tandem mass spectrometry. , 1992, Analytical biochemistry.

[22]  K. Yokota,et al.  A Second Lysine-Specific Serine Protease from Lysobacter sp. Strain IB-9374 , 2004, Journal of bacteriology.

[23]  Andrew M Goetze,et al.  Rates and impact of human antibody glycation in vivo. , 2012, Glycobiology.

[24]  Alain Balland,et al.  Disulfide connectivity of human immunoglobulin G2 structural isoforms. , 2008, Biochemistry.

[25]  J. R. Brown,et al.  Location of disulphide bridges by diagonal paper electrophoresis. The disulphide bridges of bovine chymotrypsinogen A. , 1966, The Biochemical journal.

[26]  D. Suckau,et al.  Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques , 2013, mAbs.

[27]  R. Porter The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. , 1959, The Biochemical journal.

[28]  M. H. Ryan,et al.  Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. , 2008, Molecular immunology.

[29]  C. Milstein The disulphide bridges of immunoglobulin ϰ-chains , 1966 .

[30]  F. Sanger,et al.  The arrangement of amino acids in proteins. , 1952, Advances in protein chemistry.

[31]  L. Björck,et al.  IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G , 2002, The EMBO journal.

[32]  F. McLafferty,et al.  Determination of amino acid sequences in peptide mixtures by mass spectrometry. , 1970, Biochemical and biophysical research communications.

[33]  Magnus Palmblad,et al.  Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry. , 2014, Analytical chemistry.

[34]  P. Jekel,et al.  Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis. , 1983, Analytical biochemistry.

[35]  M. Turner,et al.  Simple Method of Subtyping Human G-Myeloma Proteins based on Sensitivity to Pepsin Digestion , 1970, Nature.

[36]  E. Lederer,et al.  Determination of amino acid sequences in oligopeptides by mass spectrometry. II. The structure of peptidolipin NA. , 1965, Tetrahedron letters.

[37]  S E Builder,et al.  Characterization studies of human tissue-type plasminogen activator produced by recombinant DNA technology. , 1986, Cold Spring Harbor symposia on quantitative biology.

[38]  T. Dillon,et al.  Development of an analytical reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry method for characterization of recombinant antibodies. , 2004, Journal of chromatography. A.

[39]  Zhongqi Zhang,et al.  Characterization of variable regions of monoclonal antibodies by top-down mass spectrometry. , 2007, Analytical chemistry.

[40]  Douglas S Rehder,et al.  Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. , 2006, Journal of chromatography. A.

[41]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[42]  John F. Valliere-Douglass,et al.  Molecular mass analysis of antibodies by on-line SEC-MS , 2008, Journal of the American Society for Mass Spectrometry.

[43]  B. Garcia What does the future hold for top down mass spectrometry? , 2010, Journal of the American Society for Mass Spectrometry.

[44]  G. Drapeau,et al.  Structural heterogeneity of the protease isolated from several strains of Staphylococcus aureus. , 1974, The Journal of biological chemistry.

[45]  F. Wurm,et al.  Structural analysis of intact monoclonal antibodies by electron transfer dissociation mass spectrometry. , 2011, Analytical chemistry.

[46]  Jason C Rouse,et al.  Unit mass baseline resolution for an intact 148 kDa therapeutic monoclonal antibody by Fourier transform ion cyclotron resonance mass spectrometry. , 2011, Analytical chemistry.

[47]  B. Chait Mass Spectrometry: Bottom-Up or Top-Down? , 2006, Science.

[48]  Catherine D. Kim,et al.  Determination of the origin of the N‐terminal pyro‐glutamate variation in monoclonal antibodies using model peptides , 2007, Biotechnology and bioengineering.

[49]  Difei Qiu,et al.  C‐terminal lysine variants in fully human monoclonal antibodies: Investigation of test methods and possible causes , 2008, Biotechnology and bioengineering.

[50]  J. Shabanowitz,et al.  Sequence analysis of oligopeptides by secondary ion/collision activated dissociation mass spectrometry , 1981 .

[51]  R. Ionescu,et al.  Fragmentation of monoclonal antibodies , 2011, mAbs.

[52]  Guodong Chen,et al.  High-resolution MS for structural characterization of protein therapeutics: advances and future directions. , 2013, Bioanalysis.

[53]  C. Milstein,et al.  Inter Heavy–Light Chain Disulphide Bridge in Immune Globulins , 1967, Nature.

[54]  Johanna E. Camara,et al.  Expression and characterization of 15N-labeled human C-reactive protein in Escherichia coli and Pichia pastoris for use in isotope-dilution mass spectrometry. , 2012, Protein expression and purification.

[55]  M. Mann,et al.  Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues*S , 2004, Molecular & Cellular Proteomics.

[56]  Alain Van Dorsselaer,et al.  Characterization of therapeutic antibodies and related products. , 2013, Analytical chemistry.

[57]  C. Damen,et al.  Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab , 2009, Journal of the American Society for Mass Spectrometry.

[58]  Alain Balland,et al.  Asparagine-linked Oligosaccharides Present on a Non-consensus Amino Acid Sequence in the CH1 Domain of Human Antibodies , 2009, The Journal of Biological Chemistry.

[59]  Thomas M. Dillon,et al.  Human IgG2 Antibody Disulfide Rearrangement in Vivo* , 2008, Journal of Biological Chemistry.

[60]  K. Nakamura,et al.  Studies on a new proteolytic enzyme from Achromobacter lyticus M497-1. II. specificity and inhibition studies of Achromobacter protease I. , 1981, Biochimica et biophysica acta.

[61]  K. Steimer,et al.  Characterization of recombinant human epidermal growth factor produced in yeast. , 1988, Biochemistry.

[62]  K. Tomer FAB/MS/MS for the determination of biomolecules: A compendium , 1989 .

[63]  F. Putnam,et al.  The cleavage of human gamma-globulin by papain. , 1961, The Journal of biological chemistry.

[64]  H. Morris,et al.  Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. , 1981, Biochemical and biophysical research communications.

[65]  C. Milstein,et al.  Disulphide Bridges of a Human Immunoglobulin G Protein , 1967, Nature.

[66]  C. Milstein,et al.  Intrachain disulphide bridges in immunoglobulin G heavy chains. The Fc fragment. , 1968, The Biochemical journal.

[67]  W. Hancock,et al.  The use of high pressure liquid chromatography (hplc) for peptide mapping of proteins. IV. , 1978, Analytical biochemistry.

[68]  Hongcheng Liu,et al.  Disulfide bond structures of IgG molecules , 2012, mAbs.

[69]  J. Coon,et al.  Top-down protein fragmentation by infrared multiphoton dissociation in a dual pressure linear ion trap. , 2009, Analytical chemistry.

[70]  Jun Luo,et al.  Probing of C‐terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media , 2012, Biotechnology and bioengineering.

[71]  Wei Zhang,et al.  Complete disulfide bond assignment of a recombinant immunoglobulin G4 monoclonal antibody. , 2002, Analytical biochemistry.

[72]  W. Hancock,et al.  Use of perfluoroalkanoic acids as volatile ion pairing reagents in preparative HPLC. , 2009, International journal of peptide and protein research.

[73]  Y. Tsybin From high- to super-resolution mass spectrometry. , 2014, Chimia.

[74]  F. Karush,et al.  Chemical characterization of the peptic fragment of rabbit gamma-G-immunoglobulin. , 1967, Biochemistry.

[75]  K. Biemann,et al.  Determination of the amino acid sequence in oligopeptides by computer interpretation of their high-resolution mass spectra. , 1966, Journal of the American Chemical Society.

[76]  Thomas M. Dillon,et al.  Structural and Functional Characterization of Disulfide Isoforms of the Human IgG2 Subclass* , 2008, Journal of Biological Chemistry.

[77]  Ashley C. Gucinski,et al.  Structural comparison of two anti-CD20 monoclonal antibody drug products using middle-down mass spectrometry. , 2013, The Analyst.

[78]  Linda O. Narhi,et al.  Chemical Modifications in Therapeutic Protein Aggregates Generated under Different Stress Conditions , 2011, The Journal of Biological Chemistry.

[79]  M. Karas,et al.  2,5-Dihydroxybenzoic acid: a new matrix for laser desorption—ionization mass spectrometry , 1991 .

[80]  K. Biemann Laying the groundwork for proteomics: mass spectrometry from 1958 to 1988. , 2014, Journal of proteomics.

[81]  C. Milstein,et al.  Immunoglobulins: Structural Studies of Immunoglobulin G , 1969, Nature.

[82]  F. Sanger,et al.  The disulphide bonds of insulin. , 1955, The Biochemical journal.

[83]  Zhongqi Zhang,et al.  Mass spectrometry for structural characterization of therapeutic antibodies. , 2009, Mass spectrometry reviews.

[84]  J R Yates,et al.  Protein sequencing by tandem mass spectrometry. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[85]  R. Heimer,et al.  Products of the peptic digestion of human gamma-G-immunoglobulin. , 1967, Biochemistry.

[86]  M. Mann,et al.  Precision proteomics: The case for high resolution and high mass accuracy , 2008, Proceedings of the National Academy of Sciences.

[87]  Michael Barber,et al.  Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry , 1981 .

[88]  George C Tseng,et al.  Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. , 2005, Analytical chemistry.

[89]  Ming Li,et al.  Human IgG2 Antibodies Display Disulfide-mediated Structural Isoforms* , 2008, Journal of Biological Chemistry.

[90]  G. Drapeau,et al.  Substrate specificity of a proteolytic enzyme isolated from a mutant of Pseudomonas fragi. , 1980, The Journal of biological chemistry.

[91]  Leonid Zamdborg,et al.  Tandem mass spectrometry with ultrahigh mass accuracy clarifies peptide identification by database retrieval. , 2009, Journal of proteome research.

[92]  Neil L. Kelleher,et al.  Analysis of Intact Monoclonal Antibody IgG1 by Electron Transfer Dissociation Orbitrap FTMS* , 2012, Molecular & Cellular Proteomics.

[93]  G. Drapeau,et al.  Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[94]  T. K. Virupaksha,et al.  Acid protease from germinated sorghum. 2. Substrate specificity with synthetic peptides and ribonuclease A. , 1970, European journal of biochemistry.

[95]  P. J. Todd,et al.  Collisional activation and metastable ion characteristics. 73. High-resolution tandem mass spectrometer (MS/MS) of increased sensitivity and mass range , 1980 .

[96]  K. Tomer The development of fast atom bombardment combined with tandem mass spectrometry for the determination of biomolecules , 1989 .

[97]  A. Beck,et al.  Middle-down analysis of monoclonal antibodies with electron transfer dissociation orbitrap fourier transform mass spectrometry. , 2014, Analytical chemistry.

[98]  W. Hancock,et al.  Characterization and comparison of disulfide linkages and scrambling patterns in therapeutic monoclonal antibodies: using LC-MS with electron transfer dissociation. , 2011, Analytical chemistry.

[99]  M. Tanabe,et al.  Studies on a new proteolytic enzyme from A chromobacter lyticus M497-1. I. Purification and some enzymatic properties. , 1981, Biochimica et biophysica acta.

[100]  Jared B Shaw,et al.  Extending the isotopically resolved mass range of Orbitrap mass spectrometers. , 2013, Analytical chemistry.

[101]  A. Marshall,et al.  Top-down structural analysis of an intact monoclonal antibody by electron capture dissociation-Fourier transform ion cyclotron resonance-mass spectrometry. , 2013, Analytical chemistry.

[102]  P. Gershon Cleaved and missed sites for trypsin, lys-C, and lys-N can be predicted with high confidence on the basis of sequence context. , 2014, Journal of proteome research.

[103]  M Hirose,et al.  The primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease. , 1993, The Journal of biological chemistry.

[104]  W. Hancock,et al.  Mass spectrometric determination of disulfide linkages in recombinant therapeutic proteins using online LC-MS with electron-transfer dissociation. , 2009, Analytical chemistry.

[105]  G. Edelman,et al.  Pillars Article: The Covalent Structure of an Entire γG Immunoglobulin Molecule. Proc. Natl. Acad. Sci. USA, 1969, 63: 78–85. , 2004 .

[106]  P. Bondarenko,et al.  Mass measurement and top-down HPLC/MS analysis of intact monoclonal antibodies on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer , 2009, Journal of the American Society for Mass Spectrometry.