Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair.

Skeletal muscle is a highly specialized, postmitotic tissue that must withstand chronic mechanical and physiological stress throughout life to maintain proper contractile function. Muscle damage or disease leads to progressive weakness and disability, and manifests in more than 100 different human disorders. Current therapies to treat muscle degenerative diseases are limited mostly to the amelioration of symptoms, although promising new therapeutic directions are emerging. In this review, we discuss the pathological basis for the most common muscle degenerative diseases and highlight new and encouraging experimental and clinical opportunities to prevent or reverse these afflictions.

[1]  D M Essayan,et al.  Cyclic nucleotide phosphodiesterases. , 2001, The Journal of allergy and clinical immunology.

[2]  O. Ibraghimov-Beskrovnaya,et al.  Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix , 1992, Nature.

[3]  B. Thisse,et al.  Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. , 2007, Experimental Cell Research.

[4]  A. Delacourte,et al.  A non-DM1, non-DM2 multisystem myotonic disorder with frontotemporal dementia: phenotype and suggestive mapping of the DM3 locus to chromosome 15q21-24. , 2004, Brain : a journal of neurology.

[5]  Krzysztof Sobczak,et al.  Reversal of RNA Dominance by Displacement of Protein Sequestered on Triplet Repeat RNA , 2009, Science.

[6]  E. Maestrini,et al.  Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy , 1994, Nature Genetics.

[7]  R. Trembath,et al.  SUN1 Interacts with Nuclear Lamin A and Cytoplasmic Nesprins To Provide a Physical Connection between the Nuclear Lamina and the Cytoskeleton , 2006, Molecular and Cellular Biology.

[8]  M. Kyba,et al.  Engraftment of embryonic stem cell-derived myogenic progenitors in a dominant model of muscular dystrophy , 2009, Experimental Neurology.

[9]  S. Wilton,et al.  Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. , 2003, Human molecular genetics.

[10]  N. Romero,et al.  Telethonin-deficiency initially presenting as a congenital muscular dystrophy , 2011, Neuromuscular Disorders.

[11]  C. Mann,et al.  Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse , 2003, Nature Medicine.

[12]  P. Ward,et al.  Complement in ischemia reperfusion injury. , 2003, The American journal of pathology.

[13]  J. Kere,et al.  Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. , 1999, Human molecular genetics.

[14]  M. Ciemerych,et al.  Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. , 2011, Results and problems in cell differentiation.

[15]  L. Kunkel,et al.  Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. , 1990, The Journal of biological chemistry.

[16]  A. Wagers,et al.  Highly Efficient, Functional Engraftment of Skeletal Muscle Stem Cells in Dystrophic Muscles , 2008, Cell.

[17]  Tyson A. Clark,et al.  Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy , 2010, Nature Structural &Molecular Biology.

[18]  B. Olwin,et al.  Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. , 2001, Developmental biology.

[19]  J. Tidball,et al.  Do immune cells promote the pathology of dystrophin-deficient myopathies? , 2001, Neuromuscular Disorders.

[20]  M. Dalakas,et al.  Review: An update on inflammatory and autoimmune myopathies , 2011, Neuropathology and applied neurobiology.

[21]  H. Blau,et al.  Myoblast implantation in Duchenne muscular dystrophy: The San Francisco study , 1997, Muscle & nerve.

[22]  E. Mercuri,et al.  Muscular dystrophies due to defective glycosylation of dystroglycan. , 2007, Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology.

[23]  G. Cossu,et al.  Mesoangioblasts--vascular progenitors for extravascular mesodermal tissues. , 2003, Current opinion in genetics & development.

[24]  D. Burkin,et al.  Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy , 2009, Proceedings of the National Academy of Sciences.

[25]  L. Vallier,et al.  Induced pluripotent stem cells – alchemist's tale or clinical reality? , 2010, Expert Reviews in Molecular Medicine.

[26]  J. Harris,et al.  Myotoxic phospholipases A2 and the regeneration of skeletal muscles. , 2003, Toxicon : official journal of the International Society on Toxinology.

[27]  J. Ervasti,et al.  A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin , 1993, The Journal of cell biology.

[28]  G. D. Thomas,et al.  Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Housman,et al.  Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy , 1996, Nature Genetics.

[30]  S. Moss,et al.  Annexins: linking Ca2+ signalling to membrane dynamics , 2005, Nature Reviews Molecular Cell Biology.

[31]  Jussi Taipale,et al.  Growth factors in the extracellular matrix , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[32]  K. Campbell,et al.  Caveolin 3 Is Associated with the Calcium Release Complex and Is Modified via in Vivo Triadin Modification , 2010, Biochemistry.

[33]  J. Gilbert,et al.  Myotilin is mutated in limb girdle muscular dystrophy 1A. , 2000, Human molecular genetics.

[34]  A. Kotulska,et al.  Polymyositis, dermatomyositis and inclusion body myositis , 2012 .

[35]  T. Südhof,et al.  Primary Role of Functional Ischemia, Quantitative Evidence for the Two-Hit Mechanism, and Phosphodiesterase-5 Inhibitor Therapy in Mouse Muscular Dystrophy , 2007, PloS one.

[36]  T. Partridge Impending therapies for Duchenne muscular dystrophy. , 2011, Current opinion in neurology.

[37]  N. Bourg,et al.  Lack of Correlation between Outcomes of Membrane Repair Assay and Correction of Dystrophic Changes in Experimental Therapeutic Strategy in Dysferlinopathy , 2012, PloS one.

[38]  C. Bönnemann,et al.  Congenital Muscular Dystrophies: Toward Molecular Therapeutic Interventions , 2010, Current neurology and neuroscience reports.

[39]  K. Campbell,et al.  Post-translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies , 2002, Nature.

[40]  Barbara Gayraud-Morel,et al.  Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells , 2006, Nature Cell Biology.

[41]  J. Beavo,et al.  Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy , 2010, Proceedings of the National Academy of Sciences.

[42]  A. Engel,et al.  The earliest pathologic alterations in dysferlinopathy , 2001, Neurology.

[43]  P. Nido,et al.  Muscle engraftment of myogenic progenitor cells following intraarterial transplantation , 2006, Muscle & nerve.

[44]  Robert H. Brown,et al.  Dysferlin in Membrane Trafficking and Patch Repair , 2007, Traffic.

[45]  A. Tu,et al.  Isolation of myotoxic component from rattlesnake (Crotalus viridis viridis) venom. Electron microscopic analysis of muscle damage. , 1976, The American journal of pathology.

[46]  B. Sacchetti,et al.  Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells , 2007, Nature Cell Biology.

[47]  Marc S. Williams Myostatin mutation associated with gross muscle hypertrophy in a child. , 2004, The New England journal of medicine.

[48]  H. Sweeney,et al.  Differential requirement for individual sarcoglycans and dystrophin in the assembly and function of the dystrophin-glycoprotein complex. , 2000, Journal of cell science.

[49]  R. Artero,et al.  The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. , 2006, Differentiation; research in biological diversity.

[50]  L. Mei,et al.  Biglycan Is an Extracellular MuSK Binding Protein Important for Synapse Stability , 2012, The Journal of Neuroscience.

[51]  E Habermann,et al.  Bee and wasp venoms. , 1972, Science.

[52]  A. Sica,et al.  Macrophage polarization comes of age. , 2005, Immunity.

[53]  G. Bassez,et al.  Muscle satellite cells and endothelial cells: close neighbors and privileged partners. , 2007, Molecular biology of the cell.

[54]  Guey-Shin Wang,et al.  Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. , 2007, Molecular cell.

[55]  K. Davies,et al.  Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. , 1999, Human gene therapy.

[56]  A. Wernig,et al.  Expression of Cd34 and Myf5 Defines the Majority of Quiescent Adult Skeletal Muscle Satellite Cells , 2000, The Journal of cell biology.

[57]  J. García-Verdugo,et al.  Absence of Dysferlin Alters Myogenin Expression and Delays Human Muscle Differentiation “in Vitro”* , 2006, Journal of Biological Chemistry.

[58]  J. Beckmann,et al.  Pathophysiology of limb girdle muscular dystrophy type 2A: hypothesis and new insights into the IκBα/NF-κB survival pathway in skeletal muscle , 2001, Journal of Molecular Medicine.

[59]  K. Davies,et al.  Daily Treatment with SMTC1100, a Novel Small Molecule Utrophin Upregulator, Dramatically Reduces the Dystrophic Symptoms in the mdx Mouse , 2011, PloS one.

[60]  Jeffrey M. Statland,et al.  Facioscapulohumeral muscular dystrophy , 2008, Neurotherapeutics.

[61]  D. Housman,et al.  Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues , 1995, The Journal of cell biology.

[62]  Eric T. Wang,et al.  Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching. , 2012, Journal of the American Chemical Society.

[63]  Marinos C. Dalakas Immunopathogenesis of inflammatory myopathies , 1995, Annals of neurology.

[64]  A. Wagers,et al.  Stem cells for skeletal muscle repair , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[65]  J. Ervasti,et al.  TAT-μUtrophin mitigates the pathophysiology of dystrophin and utrophin double-knockout mice. , 2011, Journal of applied physiology.

[66]  I. Kiss,et al.  muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. , 1997, Development.

[67]  Gene table of monogenic neuromuscular disorders (nuclear genome only) , 2009, Neuromuscular Disorders.

[68]  B. Byrne,et al.  Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy , 2000, The EMBO journal.

[69]  C. Greenberg,et al.  Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s). , 1999, Human molecular genetics.

[70]  N. Bresolin,et al.  Cell Therapy of α-Sarcoglycan Null Dystrophic Mice Through Intra-Arterial Delivery of Mesoangioblasts , 2003, Science.

[71]  T. Cooper,et al.  RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1 , 2012, Proceedings of the National Academy of Sciences.

[72]  M. Sinha,et al.  Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. , 2011, Cold Spring Harbor symposia on quantitative biology.

[73]  K. Campbell,et al.  Intracellular accumulation and reduced sarcolemmal expression of dysferlin in limb–girdle muscular dystrophies , 2000, Annals of neurology.

[74]  R. Finkel Read-Through Strategies for Suppression of Nonsense Mutations in Duchenne/ Becker Muscular Dystrophy: Aminoglycosides and Ataluren (PTC124) , 2010, Journal of child neurology.

[75]  G. Piluso,et al.  Limb girdle muscular dystrophies: update on genetic diagnosis and therapeutic approaches. , 2011, Current opinion in neurology.

[76]  Abraham P. Fong,et al.  DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. , 2012, Developmental cell.

[77]  R. J. White,et al.  Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. , 2000, Science.

[78]  T. Khurana,et al.  Myostatin propeptide‐mediated amelioration of dystrophic pathophysiology , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[79]  F. Baas,et al.  Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. , 2010, American journal of human genetics.

[80]  T. Cooper,et al.  Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. , 2005, Human molecular genetics.

[81]  K. Wilson,et al.  BAF: roles in chromatin, nuclear structure and retrovirus integration. , 2004, Trends in cell biology.

[82]  D. Bredt,et al.  Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and α1-Syntrophin Mediated by PDZ Domains , 1996, Cell.

[83]  M. Dalakas Inflammatory muscle diseases: a critical review on pathogenesis and therapies. , 2010, Current opinion in pharmacology.

[84]  Lucy M. Brown,et al.  Some observations on variations in filament overlap in tetanized muscle fibres and fibres stretched during a tetanus, detected in the electron microscope after rapid fixation , 1991, Journal of Muscle Research & Cell Motility.

[85]  R. Stewart,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[86]  G. van Ommen,et al.  Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading‐frame rule , 2006, Muscle & nerve.

[87]  C. Hsiao,et al.  Structural Basis of Membrane-induced Cardiotoxin A3 Oligomerization* , 2003, Journal of Biological Chemistry.

[88]  C. Maltin,et al.  The Neurotoxicity of the Venom Phospholipases A2, Notexin and Taipoxin , 2000, Experimental Neurology.

[89]  T. Cooper,et al.  Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. , 1998, Science.

[90]  W. Groh Mexiletine is an effective antimyotonia treatment in myotonic dystrophy type 1 , 2011, Neurology.

[91]  T. Rando,et al.  The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. , 2002, Developmental cell.

[92]  M. Cullen,et al.  Muscle necrosis caused by snake venoms and toxins. , 1990, Electron microscopy reviews.

[93]  K. Bushby,et al.  Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. , 2006, Human molecular genetics.

[94]  S. Bione,et al.  Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. , 2000, American journal of human genetics.

[95]  D. Housman,et al.  Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[96]  K. Mathews,et al.  Limb-girdle muscular dystrophy , 2003, Current neurology and neuroscience reports.

[97]  Michael A. Rudnicki,et al.  Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis , 2010, Nature Cell Biology.

[98]  L. Verdijk,et al.  The impact of sarcopenia and exercise training on skeletal muscle satellite cells , 2009, Ageing Research Reviews.

[99]  D. Watt,et al.  Muscle stem cells , 2002, The Journal of pathology.

[100]  P. Mcneil,et al.  Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. , 1992, The American journal of pathology.

[101]  Steven S Vogel,et al.  The endomembrane requirement for cell surface repair , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[102]  R. Mulligan,et al.  Dystrophin expression in the mdx mouse restored by stem cell transplantation , 1999, Nature.

[103]  Se-Jin Lee,et al.  Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member , 1997, nature.

[104]  A. Nakamura,et al.  Clinical Characteristics of Aged Becker Muscular Dystrophy Patients with Onset after 30 Years , 1999, European Neurology.

[105]  S. Antonini,et al.  Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. , 2011, Nature communications.

[106]  H. Sweeney,et al.  Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. , 1999, The Journal of clinical investigation.

[107]  W. Hauswirth,et al.  A Muscleblind Knockout Model for Myotonic Dystrophy , 2003, Science.

[108]  Gayle M. Smythe,et al.  Notch-Mediated Restoration of Regenerative Potential to Aged Muscle , 2003, Science.

[109]  K. Patel,et al.  Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity , 2009, Proceedings of the National Academy of Sciences.

[110]  G. Pinkus,et al.  Interferon‐α/β–mediated innate immune mechanisms in dermatomyositis , 2005 .

[111]  L. Kunkel,et al.  Drug screening in a zebrafish model of Duchenne muscular dystrophy , 2011, Proceedings of the National Academy of Sciences.

[112]  R Hohlfeld,et al.  Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. , 1996, The Journal of clinical investigation.

[113]  J. Weber,et al.  Location of facioscapulohumeral muscular dystrophy gene on chromosome 4 , 1990, The Lancet.

[114]  J. Sanes The Basement Membrane/Basal Lamina of Skeletal Muscle* , 2003, The Journal of Biological Chemistry.

[115]  M. Rudnicki,et al.  Pax7 Is Required for the Specification of Myogenic Satellite Cells , 2000, Cell.

[116]  W. Engel,et al.  Inclusion Body Myositis: A Degenerative Muscle Disease Associated with Intra‐Muscle Fiber Multi‐Protein Aggregates, Proteasome Inhibition, Endoplasmic Reticulum Stress and Decreased Lysosomal Degradation , 2009, Brain pathology.

[117]  K. Miyake,et al.  Calpain Is Required for the Rapid, Calcium-dependent Repair of Wounded Plasma Membrane* , 2007, Journal of Biological Chemistry.

[118]  J. Vencovský,et al.  Clinical characteristics of patients with myositis and autoantibodies to different fragments of the Mi-2β antigen , 2006 .

[119]  Gregory Q. Wallace,et al.  Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. , 2009, Annual review of physiology.

[120]  M. Blasco,et al.  A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands after Cell Division , 2012, Cell.

[121]  J. Tidball,et al.  Inflammatory cell response to acute muscle injury. , 1995, Medicine and science in sports and exercise.

[122]  Johan T den Dunnen,et al.  Calpain 3 is a modulator of the dysferlin protein complex in skeletal muscle. , 2008, Human molecular genetics.

[123]  M. Swanson,et al.  Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Tetsuo Ashizawa,et al.  Somatic instability of CTG repeat in myotonic dystrophy , 1993, Neurology.

[125]  G. Bulkley,et al.  The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. , 1987, Surgery.

[126]  N. Bourg,et al.  Calpain 3 Is Activated through Autolysis within the Active Site and Lyses Sarcomeric and Sarcolemmal Components , 2003, Molecular and Cellular Biology.

[127]  A. Engel,et al.  Monoclonal antibody analysis of mononuclear cells in myopathies. IV: Cell‐mediated cytotoxicity and muscle fiber necrosis , 1988, Annals of neurology.

[128]  Kristy L. Townsend,et al.  Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat , 2010, Proceedings of the National Academy of Sciences.

[129]  A. Rabinowitz,et al.  Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology , 2006, Nature Medicine.

[130]  P. Gopalakrishnakone,et al.  Morphological changes induced by crotoxin in murine nerve and neuromuscular junction. , 1984, Toxicon : official journal of the International Society on Toxinology.

[131]  M. Kyba,et al.  Functional Myogenic Engraftment from Mouse iPS Cells , 2011, Stem Cell Reviews and Reports.

[132]  G. Valle,et al.  Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin , 2000, Nature Genetics.

[133]  C. Wijmenga,et al.  Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy , 1992, Nature genetics.

[134]  H. Worman,et al.  How do mutations in lamins A and C cause disease? , 2004, The Journal of clinical investigation.

[135]  C. Keller,et al.  Increased Wnt Signaling During Aging Alters Muscle Stem Cell Fate and Increases Fibrosis , 2007, Science.

[136]  T. Rando,et al.  High Incidence of Non-Random Template Strand Segregation and Asymmetric Fate Determination In Dividing Stem Cells and their Progeny , 2007, PLoS biology.

[137]  G. Lynch,et al.  Improved contractile function of the mdx dystrophic mouse diaphragm muscle after insulin-like growth factor-I administration. , 2002, The American journal of pathology.

[138]  S. Delp,et al.  Short Telomeres and Stem Cell Exhaustion Model Duchenne Muscular Dystrophy in mdx/mTR Mice , 2010, Cell.

[139]  J. Ervasti,et al.  Membrane organization of the dystrophin-glycoprotein complex , 1991, Cell.

[140]  J. Tidball Inflammatory processes in muscle injury and repair. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[141]  B. Wieringa,et al.  Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy , 2009, Proceedings of the National Academy of Sciences.

[142]  Jeanne Shen,et al.  A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. , 2008, Cell stem cell.

[143]  Q. Gong,et al.  Similarities and differences in mechanisms of cardiotoxins, melittin and other myotoxins. , 1996, Toxicon : official journal of the International Society on Toxinology.

[144]  E. McNally,et al.  Muscle diseases: the muscular dystrophies. , 2007, Annual review of pathology.

[145]  G. Bi,et al.  Calcium-regulated exocytosis is required for cell membrane resealing , 1995, The Journal of cell biology.

[146]  S. Agrawal,et al.  Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides , 1999, Neuromuscular Disorders.

[147]  A. Baranger,et al.  A simple ligand that selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding , 2009, Proceedings of the National Academy of Sciences.

[148]  J. Lueck,et al.  Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. , 2007, The Journal of clinical investigation.

[149]  Daniel G. Miller,et al.  A Unifying Genetic Model for Facioscapulohumeral Muscular Dystrophy , 2010, Science.

[150]  G. Zimmerman,et al.  Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. , 1988, The Journal of clinical investigation.

[151]  E. Boerwinkle,et al.  Anticipation in myotonic dystrophy , 1992, Neurology.

[152]  M. Nakamori,et al.  Pentamidine reverses the splicing defects associated with myotonic dystrophy , 2009, Proceedings of the National Academy of Sciences.

[153]  C. Ottenheijm,et al.  Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. , 2010, The Journal of clinical investigation.

[154]  Nicolas A. Dumont,et al.  Laminin-111: a potential therapeutic agent for Duchenne muscular dystrophy. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[155]  L. Lescaudron,et al.  Macrophages enhance muscle satellite cell proliferation and delay their differentiation , 1999, Muscle & nerve.

[156]  A. Engel,et al.  Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. , 1989, Human pathology.

[157]  F. Zara,et al.  Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy , 1998, Nature Genetics.

[158]  J. Fallon,et al.  Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice , 2010, Proceedings of the National Academy of Sciences.

[159]  S. Manilal,et al.  The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. , 1996, Human molecular genetics.

[160]  A. Mauro SATELLITE CELL OF SKELETAL MUSCLE FIBERS , 1961, The Journal of biophysical and biochemical cytology.

[161]  B. Thiers Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2008 .

[162]  A. Laquérriere,et al.  Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy , 2011, Nature Medicine.

[163]  J. Léger,et al.  Direct visualization of the dystrophin network on skeletal muscle fiber membrane , 1992, The Journal of cell biology.

[164]  F. Baas,et al.  Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). , 2000, Human molecular genetics.

[165]  A. Engel,et al.  Monoclonal antibody analysis of mononuclear cells in myopathies. I: Quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells , 1984, Annals of neurology.

[166]  L. Kunkel,et al.  Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. , 2002, The Journal of clinical investigation.

[167]  David E. Housman,et al.  Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member , 1992, Cell.

[168]  J. Beckmann,et al.  Calpain 3 cleaves filamin C and regulates its ability to interact with γ‐ and δ‐sarcoglycans , 2003 .

[169]  D. Sandonà,et al.  Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects , 2009, Expert Reviews in Molecular Medicine.

[170]  M. Kyba,et al.  Assessment of the Myogenic Stem Cell Compartment Following Transplantation of Pax3/Pax7‐Induced Embryonic Stem Cell‐Derived Progenitors , 2011, Stem cells.

[171]  A. Rabinowitz,et al.  Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[172]  L. Duchen,et al.  Changes in motor end-plates resulting from muscle fibre necrosis and regeneration. A light and electron microscopic study of the effects of the depolarizing fraction (cardiotoxin) of Dendroaspis jamesoni venom. , 1974, Journal of the neurological sciences.

[173]  I. Conboy,et al.  Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells , 2008, Nature.

[174]  R. Ahima,et al.  Functional improvement of dystrophic muscle by myostatin blockade , 2002, Nature.

[175]  J. Mendell,et al.  Microvascular deposition of complement membrane attack complex in dermatomyositis. , 1986, The New England journal of medicine.

[176]  D. Morgan,et al.  Early events in stretch-induced muscle damage. , 1999, Journal of applied physiology.

[177]  L. Lescaudron,et al.  Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant , 1999, Neuromuscular Disorders.

[178]  I. Graham,et al.  Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study , 2009, The Lancet Neurology.

[179]  D. Wells,et al.  Immunological hurdles in the path to gene therapy for Duchenne muscular dystrophy , 2002, Expert Reviews in Molecular Medicine.

[180]  D. Escolar,et al.  Pharmacologic and genetic therapy for childhood muscular dystrophies , 2001, Current neurology and neuroscience reports.

[181]  J. Powell,et al.  Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. , 1997, Toxicon : official journal of the International Society on Toxinology.

[182]  Giulio Cossu,et al.  Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs , 2006, Nature.

[183]  F. Muntoni,et al.  Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy , 1999, Nature Genetics.

[184]  A. Cumano,et al.  An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. , 2010, Stem cell research.

[185]  R. Tawil,et al.  Facioscapulohumeral muscular dystrophy , 2006, Muscle & nerve.

[186]  I. Weissman,et al.  Isolation of Adult Mouse Myogenic Progenitors Functional Heterogeneity of Cells within and Engrafting Skeletal Muscle , 2004, Cell.

[187]  G. Lynch,et al.  IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice , 2001, Neuromuscular Disorders.

[188]  A. Manzur,et al.  Glucocorticoid corticosteroids for Duchenne muscular dystrophy. , 2004, The Cochrane database of systematic reviews.

[189]  N. Goemans,et al.  T.O.4 A phase I/IIa study on antisense compound PRO051 in patients with Duchenne muscular dystrophy , 2009, Neuromuscular Disorders.

[190]  C. Gregorio,et al.  Muscle assembly: a titanic achievement? , 1999, Current opinion in cell biology.

[191]  J. Sanger,et al.  The Dynamic Z Bands of Striated Muscle Cells , 2008, Science Signaling.

[192]  A. Belcastro,et al.  Exercise-induced muscle injury: A calpain hypothesis , 1998, Molecular and Cellular Biochemistry.

[193]  Pieter J. de Jong,et al.  Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy , 1998, Nature Genetics.

[194]  R. Moxley,et al.  Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. , 2012, Human molecular genetics.

[195]  Juliet A. Ellis,et al.  Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. , 2007, Human molecular genetics.

[196]  U. Carraro,et al.  ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. , 1997, Biochemical and biophysical research communications.

[197]  C. Kerrigan,et al.  Ischemia reperfusion injury: A review , 1993, Microsurgery.

[198]  L. Kunkel,et al.  The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. , 1996, Human molecular genetics.

[199]  S. Naylor,et al.  Myotonic Dystrophy Type 2 Caused by a CCTG Expansion in Intron 1 of ZNF9 , 2001, Science.

[200]  N. Kasuga,et al.  Eccentric exercise‐induced morphological changes in the membrane systems involved in excitation—contraction coupling in rat skeletal muscle , 2001, The Journal of physiology.

[201]  Renzhi Han,et al.  Dysferlin and muscle membrane repair. , 2007, Current opinion in cell biology.

[202]  I. Nonaka,et al.  The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. , 2001, Human molecular genetics.

[203]  B. Mittal,et al.  Point mutation and polymorphism in Duchenne/Becker Muscular Dystrophy (D/BMD) patients , 2001, Experimental & Molecular Medicine.

[204]  Seumas McCroskery,et al.  Myostatin negatively regulates satellite cell activation and self-renewal , 2003, The Journal of cell biology.

[205]  M. Oshimura,et al.  Complete Genetic Correction of iPS Cells From Duchenne Muscular Dystrophy , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[206]  P. Ray,et al.  A cDNA clone from the Duchenne/Becker muscular dystrophy gene , 1987, Nature.

[207]  J G Cannon,et al.  Acute phase response in exercise. III. Neutrophil and IL-1 beta accumulation in skeletal muscle. , 1993, The American journal of physiology.

[208]  K. Campbell,et al.  Association of dystrophin and an integral membrane glycoprotein , 1989, Nature.

[209]  J. Ervasti,et al.  Functional Substitution by TAT-Utrophin in Dystrophin-Deficient Mice , 2009, PLoS medicine.

[210]  E. Kudryashova,et al.  Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. , 2005, Journal of molecular biology.

[211]  Benjamin L Miller,et al.  Dynamic combinatorial selection of molecules capable of inhibiting the (CUG) repeat RNA-MBNL1 interaction in vitro: discovery of lead compounds targeting myotonic dystrophy (DM1). , 2008, Journal of the American Chemical Society.

[212]  T. Cooper,et al.  Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy , 2001, Nature Genetics.

[213]  L Politano,et al.  Evaluation of cardiac and respiratory involvement in sarcoglycanopathies , 2001, Neuromuscular Disorders.

[214]  Paul T Martin,et al.  Congenital muscular dystrophies involving the O-mannose pathway. , 2007, Current molecular medicine.

[215]  E. Clementi,et al.  Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion , 2006, The Journal of cell biology.

[216]  E. Feldman,et al.  Insulin-like Growth Factor-I in Muscle Metabolism and Myotherapies , 2001, Neurobiology of Disease.

[217]  Isabelle Richard,et al.  Calpain 3: a key regulator of the sarcomere? , 2006, The FEBS journal.

[218]  J. Tidball,et al.  The role of free radicals in the pathophysiology of muscular dystrophy. , 2007, Journal of applied physiology.

[219]  K. Jellinger Myotonic Dystrophy: Present Management, Future Therapy , 2004 .

[220]  K. Tsuchida,et al.  Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle , 2010, Nature Cell Biology.

[221]  S. Yamanaka,et al.  Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[222]  D. Cocchi,et al.  Higher content of insulin-like growth factor-I in dystrophic mdx mouse: potential role in the spontaneous regeneration through an electrophysiological investigation of muscle function , 1999, Neuromuscular Disorders.

[223]  R. Rojas-García,et al.  Inflammation in dysferlin myopathy: Immunohistochemical characterization of 13 patients , 2001, Neurology.

[224]  K. Davies,et al.  Prevention of pathology in mdx mice by expression of utrophin: analysis using an inducible transgenic expression system. , 2002, Human molecular genetics.

[225]  J. Tremblay,et al.  Myoblast Transplantation : a Brief Review of the Problems and of Some Solutions , 2007 .

[226]  I. Weissman,et al.  Determinants of Skeletal Muscle Contributions from Circulating Cells, Bone Marrow Cells, and Hematopoietic Stem Cells , 2004, Stem cells.

[227]  J. Chamberlain,et al.  Emerging strategies for cell and gene therapy of the muscular dystrophies , 2009, Expert Reviews in Molecular Medicine.

[228]  Jessica L. Childs-Disney,et al.  Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. , 2009, Journal of the American Chemical Society.

[229]  T. Cooper,et al.  Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. , 2002, Molecular cell.

[230]  F. Muntoni,et al.  Oxidative stress in SEPN1‐related myopathy: From pathophysiology to treatment , 2009, Annals of neurology.

[231]  H. Takeshima,et al.  Mitsugumin 53 (MG53) facilitates vesicle trafficking in striated muscle to contribute to cell membrane repair , 2009, Communicative & integrative biology.

[232]  H. Lodish,et al.  Molecular Cloning of Caveolin-3, a Novel Member of the Caveolin Gene Family Expressed Predominantly in Muscle (*) , 1996, The Journal of Biological Chemistry.

[233]  T. Rando,et al.  Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. , 2005, Trends in cell biology.

[234]  K. Davies,et al.  Primary structure of dystrophin-related protein , 1992, Nature.

[235]  G. Butler-Browne,et al.  In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[236]  T. Ashizawa,et al.  An unstable triplet repeat in a gene related to myotonic muscular dystrophy. , 1992, Science.

[237]  Michael Kyba,et al.  Functional skeletal muscle regeneration from differentiating embryonic stem cells , 2008, Nature Medicine.

[238]  Chien-Chang Chen,et al.  Defective membrane repair in dysferlin-deficient muscular dystrophy , 2003, Nature.

[239]  Michel Georges,et al.  A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle , 1997, Nature Genetics.

[240]  C. Catani,et al.  Macrophages regulate proliferation and differentiation of satellite cells. , 1994, Biochemical and biophysical research communications.

[241]  T. Partridge,et al.  Muscle satellite cells adopt divergent fates , 2004, The Journal of cell biology.

[242]  Meenal Patel,et al.  PTC124 targets genetic disorders caused by nonsense mutations , 2007, Nature.

[243]  J. Barrett,et al.  Resealing of transected myelinated mammalian axons in vivo: evidence for involvement of calpain , 1999, Neuroscience.

[244]  M. Grounds,et al.  Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice , 1987, Cell and Tissue Research.

[245]  B. Hyman,et al.  Dysferlin Interacts with Annexins A1 and A2 and Mediates Sarcolemmal Wound-healing* , 2003, Journal of Biological Chemistry.

[246]  M. Young,et al.  Transient up-regulation of biglycan during skeletal muscle regeneration: delayed fiber growth along with decorin increase in biglycan-deficient mice. , 2004, Developmental biology.

[247]  K. Bushby,et al.  Protein studies in dysferlinopathy patients using llama-derived antibody fragments selected by phage display , 2005, European Journal of Human Genetics.

[248]  I. Weissman,et al.  Rejuvenation of aged progenitor cells by exposure to a young systemic environment , 2005, Nature.

[249]  A. Bootsma,et al.  Satellite cell activation after muscle damage in young and adult rats , 1995, The Anatomical record.

[250]  Helen M. Blau,et al.  Biological Progression from Adult Bone Marrow to Mononucleate Muscle Stem Cell to Multinucleate Muscle Fiber in Response to Injury , 2002, Cell.

[251]  E. Bertini,et al.  De novo LMNA mutations cause a new form of congenital muscular dystrophy , 2008, Annals of neurology.

[252]  C. Amemiya,et al.  Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. , 1992, Science.

[253]  G. Lynch,et al.  Administration of insulin‐like growth factor‐I improves fatigue resistance of skeletal muscles from dystrophic mdx mice , 2004, Muscle & nerve.

[254]  H. Worman,et al.  Emery-Dreifuss muscular dystrophy , 2007, Current neurology and neuroscience reports.

[255]  M. Mcdermott,et al.  Mexiletine is an effective antimyotonia treatment in myotonic dystrophy type 1 , 2010, Neurology.

[256]  J. Gutiérrez,et al.  Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. , 2003, Toxicon : official journal of the International Society on Toxinology.

[257]  Johan T den Dunnen,et al.  Local dystrophin restoration with antisense oligonucleotide PRO051. , 2007, The New England journal of medicine.

[258]  D. Bedwell,et al.  Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. , 2000, RNA.

[259]  M. Swanson,et al.  Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. , 1996, Nucleic acids research.

[260]  P. Mcneil,et al.  Requirement for Annexin A1 in Plasma Membrane Repair* , 2006, Journal of Biological Chemistry.

[261]  J. Siliciano,et al.  A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements ("costameres") mark sites of attachment between myofibrils and sarcolemma. , 1983, Proceedings of the National Academy of Sciences of the United States of America.