Uncoordinated tetrazole ligands in metal–organic frameworks for proton‐conductivity studies

[1]  Purna Chandra Rao,et al.  Study of Stability and Proton Conductivity of Zn‐based Metal–Organic Framework , 2021 .

[2]  Liang Feng,et al.  Metal–Organic Frameworks as Versatile Platforms for Organometallic Chemistry , 2021, Inorganics.

[3]  Seung Jae Yang,et al.  Rational Design of Metal–Organic Framework‐Based Materials for Advanced LiS Batteries , 2020, Bulletin of the Korean Chemical Society.

[4]  H. Kitagawa,et al.  Characterization of Proton Dynamics for the Understanding of Conduction Mechanism in Proton Conductive Metal‐Organic Frameworks , 2020, The chemical record.

[5]  S. Yoon Charge Transport Pathways of π‐Conjugated Metal–Organic Frameworks , 2020 .

[6]  H. Kitagawa,et al.  Proton Transport in Metal-Organic Frameworks. , 2020, Chemical reviews.

[7]  Lingshan Gong,et al.  Metal–Organic Frameworks as a Versatile Platform for Proton Conductors , 2020, Advanced materials.

[8]  C. Pettinari,et al.  Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands , 2018, Coordination Chemistry Reviews.

[9]  M. Yoon,et al.  Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition , 2018, Journal of Industrial and Engineering Chemistry.

[10]  Byunghyuck Jung,et al.  Defect Engineering into Metal-Organic Frameworks for the Rapid and Sequential Installation of Functionalities. , 2018, Inorganic chemistry.

[11]  X. Bu,et al.  Proton-conductive metal-organic frameworks: Recent advances and perspectives , 2017 .

[12]  C. Mirkin,et al.  Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal-Organic Framework. , 2017, ACS applied materials & interfaces.

[13]  A. Cooper,et al.  Three-dimensional protonic conductivity in porous organic cage solids , 2016, Nature Communications.

[14]  Sachin Chavan,et al.  Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis , 2016 .

[15]  Xiayan Wang,et al.  Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses , 2015 .

[16]  Bongsoo Kim,et al.  Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. , 2015, Angewandte Chemie.

[17]  J. Donoso,et al.  Theoretical pKa calculations with continuum model solvents, alternative protocols to thermodynamic cycles , 2014 .

[18]  Michael J. Katz,et al.  A facile synthesis of UiO-66, UiO-67 and their derivatives. , 2013, Chemical communications.

[19]  S. Kitagawa,et al.  Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). , 2012, Dalton transactions.

[20]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[21]  Teppei Yamada,et al.  Wide control of proton conductivity in porous coordination polymers. , 2011, Journal of the American Chemical Society.

[22]  N. Sadlej-Sosnowska,et al.  Absolute calculations of acidity of C-substituted tetrazoles in solution. , 2005, The journal of physical chemistry. A.

[23]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[24]  A. Boraei Acidity Constants of Some Tetrazole Compounds in Various Aqueous−Organic Solvent Media , 2001 .

[25]  R. Orita,et al.  Novel Synthesis of 5-Substituted Tetrazoles from Nitriles , 1998 .

[26]  K N Houk,et al.  Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. , 2005, Journal of chemical theory and computation.