Dynamic Chiral Metasurfaces for Broadband Phase‐Gradient Holographic Displays

Next‐generation holographic displays have promising applications in medical science, augmented/virtual reality, smart security, data encryption, etc. Although metasurfaces emerged as the suitable choice to provide compact holographic displays, multifunctionality in metasurfaces at broadband optical wavelengths is inevitable for the abovementioned applications. Here, a metasurface is demonstrated based on chiral structures to introduce multifunctionality in terms of multiple wavefront information depending upon the polarization of incident light. The proposed metasurface integrated with a liquid crystal (LC) provides fast switching and dynamic optical response at broadband visible wavelengths in transmission mode. To avoid the phase distortion in multiple wavefront information embedded into a single planar metasurface, chiral z‐shaped meta‐atoms are used to provide high diffraction efficiency and phase chirality response for circularly polarized (CP) light illuminations. The phase mask of holographic information is encoded into the metasurface using a combination of dynamic and geometric phase modulation techniques. The experimental validation of the designed metasurface is performed to reproduce the spin‐dependent‐specific information at broadband visible wavelengths for changing the polarization of incident light. This research may pave the way toward designing highly efficient multifunctional metadevices to produce next‐generation holographic displays for promising applications in healthcare, media, smart security, and data encryption.

[1]  Hafiz Saad Khaliq,et al.  Broadband Chiro‐Optical Effects for Futuristic Meta‐Holographic Displays , 2022, Advanced Optical Materials.

[2]  J. Rho,et al.  Broad-Band Polarization-Insensitive Metasurface Holography with a Single-Phase Map. , 2022, ACS applied materials & interfaces.

[3]  Kenji Watanabe,et al.  Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges , 2022, eLight.

[4]  Muhammad Afnan Ansari,et al.  Single-Step Fabricable Flexible Metadisplays for Sensitive Chemical/Biomedical Packaging Security and Beyond. , 2022, ACS applied materials & interfaces.

[5]  J. Rho,et al.  Electrically tunable metasurfaces: from direct to indirect mechanisms , 2022, New Journal of Physics.

[6]  Shin‐Tson Wu,et al.  Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications , 2022, Light: Science & Applications.

[7]  Zhongyang Li,et al.  Dynamic Augmented Reality Display by Layer‐Folded Metasurface via Electrical‐Driven Liquid Crystal , 2022, Advanced Optical Materials.

[8]  T. Cui,et al.  Intelligent metasurfaces: control, communication and computing , 2022, eLight.

[9]  Muhammad Afnan Ansari,et al.  Novel Spin‐Decoupling Strategy in Liquid Crystal‐Integrated Metasurfaces for Interactive Metadisplays , 2022, Advanced Optical Materials.

[10]  T. Cui,et al.  Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform , 2022, eLight.

[11]  J. Rho,et al.  Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks , 2022, Light, science & applications.

[12]  J. Rho,et al.  Photonic Encryption Platform via Dual-Band Vectorial Metaholograms in the Ultraviolet and Visible. , 2022, ACS nano.

[13]  Omar A. M. Abdelraouf,et al.  High-Order Photonic Cavity Modes Enabled 3D Structural Colors. , 2022, ACS nano.

[14]  J. Rho,et al.  Hyperbolic metamaterials: fusing artificial structures to natural 2D materials , 2022, eLight.

[15]  Dong Kyo Oh,et al.  Metasurface Holography Reaching the Highest Efficiency Limit in the Visible via One‐Step Nanoparticle‐Embedded‐Resin Printing , 2021, Laser & Photonics Reviews.

[16]  Zhongyang Li,et al.  Electric‐Driven Meta‐Optic Dynamics for Simultaneous Near‐/Far‐Field Multiplexing Display , 2021, Advanced Functional Materials.

[17]  Zhongyang Li,et al.  Real‐Time Tunable Nanoprinting‐Multiplexing with Simultaneous Meta‐Holography Displays by Stepwise Nanocavities , 2021, Advanced Functional Materials.

[18]  Q. Mu,et al.  Metasurface‐Enabled High‐Resolution Liquid‐Crystal Alignment for Display and Modulator Applications , 2021, Laser & Photonics Reviews.

[19]  Hafiz Saad Khaliq,et al.  Realizing Spin-Conserved and Spin-Encrypted Hologram using Multipolar-modulated Meta-platform , 2021, Journal of Physics: Conference Series.

[20]  S. Xiao,et al.  Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum , 2021, eLight.

[21]  Zhongyang Li,et al.  Stepwise Dual‐Fabry–Pérot Nanocavity for Grayscale Imaging Encryption/Concealment with Holographic Multiplexing , 2021, Advanced Optical Materials.

[22]  J. Rho,et al.  Geometric and physical configurations of meta‐atoms for advanced metasurface holography , 2021, InfoMat.

[23]  J. Rho,et al.  Tunable Metasurfaces: The Path to Fully Active Nanophotonics , 2021, Advanced Photonics Research.

[24]  A. Krasnok,et al.  Tunable phase-change metasurfaces , 2021, Nature Nanotechnology.

[25]  Muhammad Afnan Ansari,et al.  Holographic metasurface gas sensors for instantaneous visual alarms , 2021, Science Advances.

[26]  Hafiz Saad Khaliq,et al.  Manifesting Simultaneous Optical Spin Conservation and Spin Isolation in Diatomic Metasurfaces , 2021, Advanced Optical Materials.

[27]  J. Rho,et al.  Revealing Structural Disorder in Hydrogenated Amorphous Silicon for a Low‐Loss Photonic Platform at Visible Frequencies , 2021, Advanced materials.

[28]  P. Nealey,et al.  Broadband Liquid Crystal Tunable Metasurfaces in the Visible: Liquid Crystal Inhomogeneities Across the Metasurface Parameter Space , 2021 .

[29]  Muhammad Afnan Ansari,et al.  Stimuli‐Responsive Dynamic Metaholographic Displays with Designer Liquid Crystal Modulators , 2020, Advanced materials.

[30]  Chi Lok Wong,et al.  Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective , 2020, Frontiers in Optics and Photonics.

[31]  F. Capasso,et al.  Optical properties of metasurfaces infiltrated with liquid crystals , 2020, Proceedings of the National Academy of Sciences.

[32]  A. Alú,et al.  Full‐Color Complex‐Amplitude Vectorial Holograms Based on Multi‐Freedom Metasurfaces , 2019, Advanced Functional Materials.

[33]  William G. Whittow,et al.  A Metasurfaces Review: Definitions and Applications , 2019, Applied Sciences.

[34]  W. T. Chen,et al.  A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures , 2018, Nature Communications.

[35]  N. Yu,et al.  Broadband achromatic dielectric metalenses , 2018, Light, science & applications.

[36]  Quanlong Yang,et al.  Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves , 2018, Light: Science & Applications.

[37]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[38]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[39]  Federico Capasso,et al.  Arbitrary spin-to–orbital angular momentum conversion of light , 2017, Science.

[40]  Din Ping Tsai,et al.  GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. , 2017, Nano letters.

[41]  Anton Autere,et al.  Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials , 2017 .

[42]  I. Staude,et al.  Metamaterial-inspired silicon nanophotonics , 2017, Nature Photonics.

[43]  Yuri S. Kivshar,et al.  Electrically tunable all-dielectric optical metasurfaces based on liquid crystals , 2017 .

[44]  Wei Ting Chen,et al.  Polarization-Insensitive Metalenses at Visible Wavelengths. , 2016, Nano letters.

[45]  Federico Capasso,et al.  Broadband and chiral binary dielectric meta-holograms , 2016, Science Advances.

[46]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[47]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[48]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[49]  Xiangdong Zhang,et al.  Spin-based resonant effect and focusing lens of light by dielectric nanoparticles , 2013 .

[50]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[51]  Yehia Massoud,et al.  Nanoscale surface plasmon based resonator using rectangular geometry , 2007 .

[52]  David R. Smith,et al.  Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial , 2001 .

[53]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .