Genetic profile of 22 pancreatic carcinoma cell lines

[1]  G. Gaviraghi,et al.  Successful xenografting of cryopreserved primary pancreatic cancers , 2001, Virchows Archiv.

[2]  S. Kern,et al.  Homozygous deletions inactivate DCC, but not MADH4/DPC4/SMAD4, in a subset of pancreatic and biliary cancers , 2000, Genes, chromosomes & cancer.

[3]  M V Chernov,et al.  A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. , 1999, Science.

[4]  K. Kinzler,et al.  Disruption of p53 in human cancer cells alters the responses to therapeutic agents. , 1999, The Journal of clinical investigation.

[5]  R. Hruban,et al.  Novel homozygous deletions of chromosomal band 18q22 in pancreatic adenocarcinoma identified by STS marker scanning , 1999, Genes, chromosomes & cancer.

[6]  A. Schudy,et al.  Higher frequency of DPC4/Smad4 alterations in pancreatic cancer cell lines than in primary pancreatic adenocarcinomas. , 1999, Cancer letters.

[7]  A. Andrén-sandberg,et al.  Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer , 1999, Genes, chromosomes & cancer.

[8]  G. Capellá,et al.  Disruption of the antiproliferative TGF-β signaling pathways in human pancreatic cancer cells , 1998, Oncogene.

[9]  M. Taniwaki,et al.  Rare Alteration of Genomic Structure or Expression of the DPC4 Gene in Myelogenous Leukemias , 1998, Acta Haematologica.

[10]  W. Schmiegel,et al.  Mutations of the DPC4/Smad4 gene in biliary tract carcinoma. , 1998, Cancer research.

[11]  J. Yokota,et al.  Expression and mutational analysis of the DCC, DPC4, and MADR2/JV18-1 genes in neuroblastoma. , 1997, Cancer research.

[12]  D. Slamon,et al.  Comparative mutational analysis of DPC4 (Smad4) in prostatic and colorectal carcinomas , 1997, Oncogene.

[13]  S. Goodman,et al.  Tumor-suppressive pathways in pancreatic carcinoma. , 1997, Cancer research.

[14]  S. Kern,et al.  DPC4 gene mutation in colitis associated neoplasia. , 1997, Gut.

[15]  G. Capellá,et al.  Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. , 1996, Cancer research.

[16]  Suna Wang,et al.  Infrequent DPC4 gene mutation in esophageal cancer, gastric cancer and ulcerative colitis-associated neoplasms. , 1996, Oncogene.

[17]  S. Kern,et al.  Allelic loss and mutational analysis of the DPC4 gene in esophageal adenocarcinoma. , 1996, Cancer research.

[18]  J. Herman,et al.  Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Scott E. Kern,et al.  Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers , 1996, Nature Genetics.

[20]  R. Lotan,et al.  DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. , 1996, Cancer research.

[21]  Kathleen R. Cho,et al.  DPC4 gene in various tumor types. , 1996, Cancer research.

[22]  Scott E. Kern,et al.  DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1 , 1996, Science.

[23]  R. Hruban,et al.  Allelotype of pancreatic adenocarcinoma using xenograft enrichment. , 1995, Cancer research.

[24]  J. Lloreta,et al.  New pancreas cancers cell lines that represent distinct stages of ductal differentiation. , 1995, Laboratory investigation; a journal of technical methods and pathology.

[25]  A. Klein-Szanto,et al.  Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. , 1994, Cancer research.

[26]  R. Hruban,et al.  Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma , 1994, Nature Genetics.

[27]  R. Hruban,et al.  p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. , 1994, Cancer research.

[28]  C Caldas,et al.  Allelotype of pancreatic adenocarcinoma. , 1994, Cancer research.

[29]  G. Capellá,et al.  Pancreatic cancer in europe: Ki‐ras gene mutation pattern shows geographical differences , 1994, International journal of cancer.

[30]  S. Hirohashi,et al.  Pancreatic adenocarcinomas frequently show p53 gene mutations. , 1993, The American journal of pathology.

[31]  G. Lauer,et al.  p53 and K-RAS alterations in pancreatic epithelial cell lesions. , 1993, Oncogene.

[32]  M. Iannuzzi,et al.  A cystic fibrosis pancreatic adenocarcinoma cell line. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Singletary,et al.  Establishment of a New Human Pancreatic Adenocarcinoma Cell Line, MDAPanc‐3 , 1990, Pancreas.

[34]  T. Shimauchi,et al.  The tumor cells (FA-6) established from a pancreatic cancer associated with humoral hypercalcemia of malignancy: a simultaneous production of parathyroid hormone-like activity and transforming growth factor activity. , 1989, Endocrinologia japonica.

[35]  G. Fleuren,et al.  KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. , 1988, Nucleic acids research.

[36]  D. Shibata,et al.  Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes , 1988, Cell.

[37]  T. Sugimura,et al.  Establishment of a human pancreatic adenocarcinoma cell line (PSN-1) with amplifications of both c-myc and activated c-Ki-ras by a point mutation. , 1986, Biochemical and biophysical research communications.

[38]  N. Yamaguchi,et al.  Establishment and characterization of a carcinoembryonic antigen (CEA)‐producing cell line from a human carcinoma of the exocrine pancreas , 1983, Cancer.

[39]  M. D. Turner,et al.  Establishment and characterization of two human pancreatic cancer cell lines tumorigenic in athymic mice. , 1982, Cancer research.

[40]  M. Borowitz,et al.  Antigens of human pancreatic adenocarcinoma cells defined by murine monoclonal antibodies. , 1982, Cancer research.

[41]  J. Hermon-Taylor,et al.  Establishment and characterization of primary human pancreatic carcinoma in continuous cell culture and in nude mice. , 1979, British Journal of Cancer.

[42]  A. Yunis,et al.  Human pancreatic carcinoma (mia paca‐2) in continuous culture: Sensitivity to asparaginase , 1977, International journal of cancer.

[43]  M. Lieber,et al.  Establishment of a continuous tumor‐cell line (PANC‐1) from a human carcinoma of the exocrine pancreas , 1975, International journal of cancer.

[44]  R. Hruban,et al.  Loss of Expression of Dpc 4 in Pancreatic Intraepithelial Neoplasia : Evidence That DPC 4 Inactivation Occurs Late in Neoplastic Progression 1 , 2000 .

[45]  R. Klinke,et al.  A Chemical Inhibitor of p 53 That Protects Mice from the Side Effects of Cancer Therapy , 1999 .

[46]  T. Mitsudomi,et al.  Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. , 1996, Cancer research.

[47]  N. Lemoine,et al.  Ki-ras oncogene activation in preinvasive pancreatic cancer. , 1992, Gastroenterology.

[48]  A. Klein-Szanto,et al.  Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes. , 1992, Oncogene.

[49]  T. Iwamura,et al.  Establishment and characterization of a human pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-9. , 1987, Japanese journal of cancer research : Gann.