Update of the development progress of the high power LPP-EUV light source using a magnetic field

Gigaphoton Inc. is developing a laser produced plasma (LPP) extreme ultra violet (EUV) light source for high-volumemanufacturing (HVM) semiconductor lithography. Original technologies and key components of this source include a high-power carbon dioxide (CO2) laser with 15ns pulse duration, a short wavelength solid-state pre-pulse laser with 10ps pulse duration, a highly stabilized small droplet (DL) target, a precise laser-DL shooting control system and debris mitigation technology with a magnetic field. In this paper, an update of the development progress of the total system and of the key components is presented.

[1]  Tsuyoshi Yamada,et al.  Sub-hundred Watt operation demonstration of HVM LPP-EUV source , 2014, Advanced Lithography.

[2]  Koichi Toyoda,et al.  Laser produced EUV light source development for HVM , 2007, SPIE Advanced Lithography.

[3]  Junichi Fujimoto,et al.  Development of Laser-Produced Tin Plasma-Based EUV Light Source Technology for HVM EUV Lithography , 2012 .

[4]  Hiroshi Komori,et al.  First generation laser-produced plasma source system for HVM EUV lithography , 2010, Advanced Lithography.

[5]  Akira Sumitani,et al.  Development of the reliable 20 kW class pulsed carbon dioxide laser system for LPP EUV light source , 2011, Advanced Lithography.

[6]  Shuichi Fujikawa,et al.  Transverse-flow radio-frequency-excited amplifier seeded by a cavity-dumped CO2 laser for an extreme ultraviolet light source. , 2013, Optics letters.

[7]  Akira Sumitani,et al.  CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology , 2013 .

[8]  V. Bakshi EUV Lithography , 2008 .

[9]  Kunioki Mima,et al.  Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications , 2005 .

[10]  Kunioki Mima,et al.  Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production , 2008 .

[11]  Kunioki Mima,et al.  Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas. , 2005, Physical review letters.

[12]  Kunioki Mima,et al.  Absolute evaluation of out-of-band radiation from laser-produced tin plasmas for extreme ultraviolet lithography , 2008 .

[13]  Andrew G. Glen,et al.  APPL , 2001 .

[14]  Georg Soumagne,et al.  Enhancement of extreme ultraviolet emission from a CO2 laser-produced Sn plasma using a cavity target , 2007 .

[15]  Hiroki Tanaka,et al.  Behavior of debris from laser-produced plasma for extreme ultraviolet light source measured by laser imaging technique , 2006 .

[16]  D. Attwood Soft X-Rays and Extreme Ultraviolet Radiation , 1999 .

[17]  Georg Soumagne,et al.  Reduction of debris of a CO2 laser-produced Sn plasma extreme ultraviolet source using a magnetic field , 2008 .

[18]  Kunioki Mima,et al.  Neutral Debris Mitigation in Laser Produced Extreme Ultraviolet Light Source by the Use of Minimum-Mass Tin Target , 2008 .

[19]  D. Lunney,et al.  Atomic Data and Nuclear Data Tables , 2015 .

[20]  Georg Soumagne,et al.  100W 1st generation laser-produced plasma light source system for HVM EUV lithography , 2011, Advanced Lithography.

[21]  Ryosuke Kodama,et al.  Enhancement of keV x‐ray emission in laser‐produced plasmas by a weak prepulse laser , 1987 .

[22]  Kunioki Mima,et al.  Spectroscopic study of debris mitigation with minimum-mass sn laser plasma for extreme ultraviolet lithography , 2006 .

[23]  Tsuyoshi Yamada,et al.  Performance of new high-power HVM LPP-EUV source , 2016, SPIE Advanced Lithography.

[24]  Georg Soumagne,et al.  Performance of one hundred watt HVM LPP-EUV source , 2015, Advanced Lithography.

[25]  Hiroki Tanaka,et al.  Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas , 2005 .

[26]  S. S. Harilal,et al.  Efficient laser-produced plasma extreme ultraviolet sources using grooved Sn targets , 2010 .