Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers

In this paper we analyse the superconvergence property of the streamline diffusion finite element method (SDFEM) in the case of elliptic problems with characteristic layers. For the SDFEM we give optimal parameter choices for maximal stability in the induced streamline diffusion norm. It is shown that inside the parabolic boundary layer the SDFEM-parameter can be chosen of order @e^-^1^/^4N^-^2 which is also confirmed by numerical results.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[3]  Hans-Görg Roos Optimal Convergence of Basic Schemes for Elliptic Boundary Value Problems with Strong Parabolic Layers , 2002 .

[4]  U MartinStynes A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem , 1997 .

[5]  Martin Stynes,et al.  A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem☆ , 1997 .

[6]  R. Bruce Kellogg,et al.  Sharpened bounds for corner singularities and boundary layers in a simple convection-diffusion problem , 2007, Appl. Math. Lett..

[7]  S. Franz,et al.  Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection–diffusion problem with characteristic layers , 2008 .

[8]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[9]  Zhimin Zhang,et al.  Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems , 2003, Math. Comput..

[10]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[11]  Torsten Linß,et al.  Uniform superconvergence of a Galerkin finite element method on Shishkin‐type meshes , 2000 .

[12]  Lutz Tobiska,et al.  The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..

[13]  Torsten Linß Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems , 2005 .

[14]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[15]  Hans-Görg Roos,et al.  A Priori Estimates for the Solution of Convection-Diffusion Problems and Interpolation on Shishkin Meshes , 1997 .

[16]  R. Bruce Kellogg,et al.  Corner singularities and boundary layers in a simple convection–diffusion problem☆ , 2005 .

[17]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[18]  Piet Hemker A singularly perturbed model problem for numerical computation , 1996 .

[19]  Natalia Kopteva,et al.  How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers? , 2004 .

[20]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .