Plasmodium vivax readiness to transmit: implication for malaria eradication

BackgroundThe lack of a continuous long-term in vitro culture system for Plasmodium vivax severely limits our knowledge of pathophysiology of the most widespread malaria parasite. To gain direct understanding of P. vivax human infections, we used Next Generation Sequencing data mining to unravel parasite in vivo expression profiles for P. vivax, and P. falciparum as comparison.ResultsWe performed cloud and local computing to extract parasite transcriptomes from publicly available raw data of human blood samples. We developed a Poisson Modelling (PM) method to confidently identify parasite derived transcripts in mixed RNAseq signals of infected host tissues. We successfully retrieved and reconstructed parasite transcriptomes from infected patient blood as early as the first blood stage cycle; and the same methodology did not recover any significant signal from controls. Surprisingly, these first generation blood parasites already show strong signature of transmission, which indicates the commitment from asexual-to-sexual stages. Further, we place the results within the context of P. vivax’s complex life cycle, by developing mathematical models for P. vivax and P. falciparum and using sensitivity analysis assess the relative epidemiological impact of possible early stage transmission.ConclusionThe study uncovers the earliest onset of P. vivax blood pathogenesis and highlights the challenges of P. vivax eradication programs.

[1]  Changjin Hong,et al.  PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples , 2014, Microbiome.

[2]  Marjorie J. Wonham,et al.  An epidemiological model for West Nile virus: invasion analysis and control applications , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  X. Su,et al.  Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum , 2011, BMC Genomics.

[4]  Qin Cheng,et al.  Systematic Review of Sub-microscopic P. vivax Infections: Prevalence and Determining Factors , 2015, PLoS neglected tropical diseases.

[5]  E. P. Camargo,et al.  High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. , 2002, The American journal of tropical medicine and hygiene.

[6]  U. d’Alessandro,et al.  1912-2012: a century of research on Plasmodium vivax in vitro culture. , 2013, Trends in parasitology.

[7]  Manuel Llinás,et al.  A transcriptional switch underlies commitment to sexual development in malaria parasites , 2014 .

[8]  J. Roberts,et al.  A retrospective examination of anemia during infection of humans with Plasmodium vivax. , 2003, The American journal of tropical medicine and hygiene.

[9]  R. Carter,et al.  Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development , 1990, Parasitology.

[10]  Quique Bassat,et al.  Key Knowledge Gaps for Plasmodium vivax Control and Elimination , 2016, The American journal of tropical medicine and hygiene.

[11]  M. Castro,et al.  Epidemiology of Disappearing Plasmodium vivax Malaria: A Case Study in Rural Amazonia , 2014, PLoS neglected tropical diseases.

[12]  G. Vogel The forgotten malaria. , 2013, Science.

[13]  A simulation model of the within-host dynamics of Plasmodium vivax infection , 2015, Malaria Journal.

[14]  N. White Determinants of relapse periodicity in Plasmodium vivax malaria , 2011, Malaria Journal.

[15]  Teun Bousema,et al.  Epidemiology and Infectivity of Plasmodium falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and Elimination , 2011, Clinical Microbiology Reviews.

[16]  J. Botella de Maglia,et al.  [Prevention of malaria]. , 1999, Revista clinica espanola.

[17]  I. Mueller,et al.  The Biology of Plasmodium vivax. , 2017, Cold Spring Harbor perspectives in medicine.

[18]  R. Sinden,et al.  Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study , 1982, Parasitology.

[19]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[20]  Rustom Antia,et al.  Optimal Pattern of Replication and Transmission for Parasites with Two Stages in Their Life Cycle , 1995 .

[21]  C. Mendis,et al.  A mathematical model for Plasmodium vivax malaria transmission: estimation of the impact of transmission-blocking immunity in an endemic area. , 1991, Bulletin of the World Health Organization.

[22]  Feng Chen,et al.  OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups , 2005, Nucleic Acids Res..

[23]  A. Vaughan,et al.  Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. , 2015, Cell host & microbe.

[24]  R. Price,et al.  Treatment-seeking behaviour and associated costs for malaria in Papua, Indonesia , 2016, Malaria Journal.

[25]  P. Gething,et al.  The global public health significance of Plasmodium vivax. , 2012, Advances in parasitology.

[26]  J. Baird,et al.  Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. , 2009, The Lancet. Infectious diseases.

[27]  G. Gibson,et al.  Transcription Profiling of Malaria-Naïve and Semi-immune Colombian Volunteers in a Plasmodium vivax Sporozoite Challenge , 2015, PLoS neglected tropical diseases.

[28]  Nora L. Martínez,et al.  Plasmodium vivax Sporozoite Challenge in Malaria-Naïve and Semi-Immune Colombian Volunteers , 2014, PloS one.

[29]  Denis C. Bauer,et al.  A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data , 2014, bioRxiv.

[30]  David L. Smith,et al.  Global Epidemiology of Plasmodium vivax , 2016, The American journal of tropical medicine and hygiene.

[31]  N. White,et al.  Chapter Two - Relapse , 2012 .

[32]  G. Macdonald,et al.  The analysis of equilibrium in malaria. , 1952, Tropical diseases bulletin.

[33]  W. Huber,et al.  Differential expression analysis for sequence count data , 2010 .

[34]  Zbynek Bozdech,et al.  New insights into the Plasmodium vivax transcriptome using RNA-Seq , 2016, Scientific Reports.

[35]  Hirofumi Ishikawa,et al.  A mathematical model for the transmission of Plasmodium vivax malaria. , 2003, Parasitology international.

[36]  Jeff H. Chang,et al.  GENE-Counter: A Computational Pipeline for the Analysis of RNA-Seq Data for Gene Expression Differences , 2011, PloS one.

[37]  J. Carlton,et al.  Why Is Plasmodium vivax a Neglected Tropical Disease? , 2011, PLoS neglected tropical diseases.

[38]  O Diekmann,et al.  The construction of next-generation matrices for compartmental epidemic models , 2010, Journal of The Royal Society Interface.

[39]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[40]  David L. Smith,et al.  Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens , 2012, PLoS pathogens.

[41]  A. Lensen,et al.  Plasmodium falciparum: infectivity of cultured, synchronized gametocytes to mosquitoes. , 1999, Experimental parasitology.

[42]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[43]  M. Marti,et al.  Biology of Malaria Transmission. , 2017, Cold Spring Harbor perspectives in medicine.

[44]  Anil Rai,et al.  Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach , 2016, J. Comput. Biol..

[45]  L. Turner,et al.  Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface , 2013, Cellular microbiology.

[46]  S. Hay,et al.  Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission , 2014, eLife.

[47]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[48]  P. Newton,et al.  Mixed-species malaria infections in humans. , 2004, Trends in parasitology.

[49]  G. Shanks,et al.  Implications of Plasmodium vivax Biology for Control, Elimination, and Research , 2016, The American journal of tropical medicine and hygiene.

[50]  E. Linders,et al.  Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. , 2001, Molecular and biochemical parasitology.

[51]  A. Ghani,et al.  Variation in relapse frequency and the transmission potential of Plasmodium vivax malaria , 2016, Proceedings of the Royal Society B: Biological Sciences.

[52]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[53]  Charlotte Soneson,et al.  A comparison of methods for differential expression analysis of RNA-seq data , 2013, BMC Bioinformatics.

[54]  S. Teichmann,et al.  RNA sequencing reveals two major classes of gene expression levels in metazoan cells , 2011, Molecular systems biology.

[55]  G. Macdonald Epidemiologic models in studies of vectorborne diseases. , 1961, Public health reports.

[56]  Yutaka Suzuki,et al.  Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum , 2014, Genome research.

[57]  R. Sauerwein,et al.  Experimental human challenge infections can accelerate clinical malaria vaccine development , 2010, Nature Reviews Immunology.

[58]  David M. Hartley,et al.  A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010 , 2013, Journal of The Royal Society Interface.