Contextuality and Indistinguishability

It is well known that in quantum mechanics we cannot always define consistently properties that are context independent. Many approaches exist to describe contextual properties, such as Contextuality by Default (CbD), sheaf theory, topos theory, and non-standard or signed probabilities. In this paper we propose a treatment of contextual properties that is specific to quantum mechanics, as it relies on the relationship between contextuality and indistinguishability. In particular, we propose that if we assume the ontological thesis that quantum particles or properties can be indistinguishable yet different, no contradiction arising from a Kochen-Specker-type argument appears: when we repeat an experiment, we are in reality performing an experiment measuring a property that is indistinguishable from the first, but not the same. We will discuss how the consequences of this move may help us understand quantum contextuality.

[1]  J. Acacio de Barros Beyond the quantum formalism: consequences of a neural-oscillator model to quantum cognition , 2013, ArXiv.

[2]  Ehtibar N. Dzhafarov,et al.  Contextuality-by-Default 2.0: Systems with Binary Random Variables , 2016, QI.

[3]  Peter D. Kvam,et al.  Neural implementation of operations used in quantum cognition. , 2017, Progress in biophysics and molecular biology.

[4]  Patrick Suppes,et al.  Quantum mechanics, interference, and the brain , 2009 .

[5]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[6]  Pawel Kurzynski,et al.  Contextuality of identical particles , 2016, 1609.01250.

[7]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[8]  J. Acacio de Barros,et al.  Quantum-like model of behavioral response computation using neural oscillators , 2012, Biosyst..

[9]  Andrei Khrennikov Linear representations of probabilistic transformations induced by context transitions , 2001 .

[10]  Gary Oas,et al.  A Survey of Physical Principles Attempting to Define Quantum Mechanics , 2015, 1506.05515.

[11]  Patrick Suppes,et al.  When are probabilistic explanations possible? , 2005, Synthese.

[12]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[13]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[14]  N. C. A. Costa,et al.  Definability and Invariance , 2007, Stud Logica.

[15]  S. French,et al.  Identity in Physics: A Historical, Philosophical, and Formal Analysis , 2006 .

[16]  Jean-Pierre Antoine,et al.  Rigged Hilbert Spaces in Quantum Physics , 2009, Compendium of Quantum Physics.

[17]  Samson Abramsky,et al.  Logical Bell Inequalities , 2012, ArXiv.

[18]  Yoshiharu Tanaka,et al.  Quantum Adaptivity in Biology: From Genetics to Cognition , 2015, Springer Netherlands.

[19]  Samson Abramsky,et al.  An Operational Interpretation of Negative Probabilities and No-Signalling Models , 2014, Horizons of the Mind.

[20]  Bas C. van Fraassen,et al.  The physics and metaphysics of identity and individuality , 2011 .

[21]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[22]  E. Specker,et al.  The Logic of Propositions Which are not Simultaneously Decidable , 1975 .

[23]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[24]  Kapuściński Wj,et al.  Science and Humanism , 1935, Nature.

[25]  K. Hepp I) Philosophy of Mathematics and Natural Science , 2010 .

[26]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[27]  Adan Cabello,et al.  Exclusivity principle and the quantum bound of the Bell inequality , 2014, 1406.5656.

[28]  Andrei Khrennikov Contextual Approach to Quantum Theory , 2004 .

[29]  Emmanuel Haven A Black-Scholes Schrödinger option price: ‘bit’ versus ‘qubit’ , 2003 .

[30]  Patrick Suppes,et al.  Negative probabilities and Counterfactual Reasoning on the double-slit Experiment , 2014, 1412.4888.

[31]  Gary Oas,et al.  Negative probabilities and counter-factual reasoning in quantum cognition , 2014, 1404.3921.

[32]  Andrei Khrennikov,et al.  Towards Information Lasers , 2015, Entropy.

[33]  A. Yu. Khrennikov p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies , 1993 .

[34]  S. French,et al.  Remarks on the Theory of Quasi-sets , 2010, Stud Logica.

[35]  Masanori Ohya,et al.  Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law , 2013 .

[36]  F. Holik,et al.  A Discussion on Particle Number and Quantum Indistinguishability , 2007, 0705.3417.

[37]  Jose Acacio de Barros,et al.  Decision Making for Inconsistent Expert Judgments Using Negative Probabilities , 2013, QI.

[38]  Patrick Suppes,et al.  Diffraction with well-defined photon trajectories: A foundational analysis , 1994 .

[39]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[40]  A. Cabello,et al.  Bell-Kochen-Specker theorem: A proof with 18 vectors , 1996, quant-ph/9706009.

[41]  Andreas Döring Kochen–Specker Theorem for von Neumann Algebras , 2005 .

[42]  Adán Cabello,et al.  Necessary and Sufficient Condition for Quantum State-Independent Contextuality. , 2015, Physical review letters.

[43]  Gary Oas,et al.  Negative Probabilities and Contextuality , 2015, 1511.02823.

[44]  Gary Oas,et al.  Quantum Mechanics & the Brain, and some of its Consequences , 2015 .

[45]  Michael Meyling,et al.  Axiomatic Set Theory , 2008 .

[46]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[47]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[48]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[49]  J. Acacio de Barros,et al.  Exploring non-signalling polytopes with negative probability , 2014, 1404.3831.