Temperature Effects in the Band Structure of Topological Insulators.

We study the effects of temperature on the band structure of the Bi_{2}Se_{3} family of topological insulators using first-principles methods. Increasing temperature drives these materials towards the normal state, with similar contributions from thermal expansion and from electron-phonon coupling. The band gap changes with temperature reach 0.3 eV at 600 K, of similar size to the changes caused by electron correlation. Our results suggest that temperature-induced topological phase transitions should be observable near critical points of other external parameters.

[1]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[2]  False-positive and false-negative assignments of topological insulators in density functional theory and hybrids , 2011, 1101.3734.

[3]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  C. Ting,et al.  Pressure-induced topological quantum phase transition in Sb2Se3 , 2013, 1304.3336.

[6]  M. Weinert,et al.  Tuning Dirac states by strain in the topological insulator Bi2Se3 , 2014, Nature Physics.

[7]  Feliciano Giustino,et al.  Electron-phonon interactions from first principles , 2016, 1603.06965.

[8]  D. Tanner,et al.  Signatures of a pressure-induced topological quantum phase transition in BiTeI. , 2013, Physical review letters.

[9]  Philip B. Allen,et al.  Theory of the temperature dependence of electronic band structures , 1976 .

[10]  Á. Rivas,et al.  Uhlmann phase as a topological measure for one-dimensional fermion systems. , 2013, Physical review letters.

[11]  F. Giustino,et al.  Quantum nuclear dynamics in the photophysics of diamondoids , 2013, Nature Communications.

[12]  Adalberto Fazzio,et al.  Switching a normal insulator into a topological insulator via electric field with application to phosphorene. , 2015, Nano letters.

[13]  D. Arovas,et al.  Topological indices for open and thermal systems via Uhlmann's phase. , 2014, Physical review letters.

[14]  I. Garate,et al.  Phonon-induced topological insulation , 2014, 1403.3880.

[15]  X. Gonze,et al.  Verification of first-principles codes: Comparison of total energies, phonon frequencies, electron–phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo , 2013, 1309.0729.

[16]  R. W. Ure,et al.  Lattice expansion of Bi2Te3 from 4.2 K to 600 K , 1974 .

[17]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[18]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[19]  L. Tan,et al.  Strain-Induced Ferroelectric Topological Insulator. , 2015, Nano letters.

[20]  B. M. Wojek,et al.  Direct observation and temperature control of the surface Dirac gap in a topological crystalline insulator , 2015, Nature Communications.

[21]  Georg Kresse,et al.  Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)] , 2006 .

[22]  U. Waghmare,et al.  Sharp Raman anomalies and broken adiabaticity at a pressure induced transition from band to topological insulator in Sb2Se3. , 2013, Physical review letters.

[23]  J. Ihm,et al.  Topological quantum phase transitions driven by external electric fields in Sb2Te3 thin films , 2011, Proceedings of the National Academy of Sciences.

[24]  Xi Dai,et al.  Topological insulators in Bi 2 Se 3 , Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface , 2009 .

[25]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[26]  Á. Rivas,et al.  Two-dimensional density-matrix topological fermionic phases: topological Uhlmann numbers. , 2014, Physical review letters.

[27]  S. Jhi,et al.  Topological phase transitions in group IV-VI semiconductors by phonons , 2015 .

[28]  Y. P. Chen,et al.  Thermal expansion coefficients of Bi2Se3 and Sb2Te3 crystals from 10 K to 270 K , 2011, 1112.1608.

[29]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  I. Garate Phonon-induced topological transitions and crossovers in Dirac materials. , 2012, Physical review letters.

[32]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  Steven G. Louie,et al.  Quasiparticle effects in the bulk and surface-state bands of Bi$_{2}$Se$_{3}$ and Bi$_{2}$Te$_{3}$ topological insulators , 2011, 1108.2088.

[35]  S. Diehl,et al.  Topology of density matrices , 2015, 1501.04135.

[36]  A. Marini,et al.  Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene. , 2011, Physical review letters.

[37]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  G. Gu,et al.  High-pressure phase transitions, amorphization, and crystallization behaviors in Bi2Se3 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[41]  Comparing electron-phonon coupling strength in diamond, silicon, and silicon carbide: First-principles study , 2014, 1406.0654.

[42]  Bartomeu Monserrat,et al.  Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells , 2015, 1510.04418.

[43]  S. Louie,et al.  Electron-phonon renormalization of the direct band gap of diamond. , 2010, Physical review letters.