A robust SUPG norm a posteriori error estimator for stationary convection-diffusion equations

A robust residual-based a posteriori estimator is proposed for the SUPG finite element method applied to stationary convection–diffusion-reaction equations. The error in the natural SUPG norm is estimated. The main concern of this paper is the consideration of the convection-dominated regime. A global upper bound and a local lower bound for the error are derived, where the global upper estimate relies on some hypotheses. Numerical studies demonstrate the robustness of the estimator and the fulfillment of the hypotheses. A comparison to other residual-based estimators with respect to the adaptive grid refinement is also provided.

[1]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[2]  V. John,et al.  A posteriori optimization of parameters in stabilized methods for convection-diffusion problems - Part II , 2011, J. Comput. Appl. Math..

[3]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[4]  Mohamed Hamdy Doweidar,et al.  Application of Variational a-Posteriori Multiscale Error Estimation to Higher-Order Elements , 2006 .

[5]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[6]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[7]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[8]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[9]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[10]  Mohamed Hamdy Doweidar,et al.  A Posteriori Error Estimation for Computational Fluid Dynamics: The Variational Multiscale Approach , 2010 .

[11]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[12]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[13]  Giancarlo Sangalli Robust a-posteriori estimator for advection-diffusion-reaction problems , 2008, Math. Comput..

[14]  Erik Burman,et al.  A Posteriori Error Estimation for Interior Penalty Finite Element Approximations of the Advection-Reaction Equation , 2009, SIAM J. Numer. Anal..

[15]  Volker John,et al.  A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .

[16]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[17]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[18]  Volker John,et al.  Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations , 2011, SIAM J. Numer. Anal..

[19]  Mohamed Hamdy Doweidar,et al.  Variational multiscale a-posteriori error estimation for multi-dimensional transport problems , 2008 .

[20]  Volker John,et al.  An assessment of discretizations for convection-dominated convection–diffusion equations , 2011 .

[21]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[22]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[23]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[24]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[25]  J. Maubach,et al.  Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems , 1997 .

[26]  Piet Hemker A singularly perturbed model problem for numerical computation , 1996 .

[27]  T. Tezduyar,et al.  Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation , 2006 .