About Tracing Problems in Dynamic Geometry

Dynamic Geometry is the field of interactively performing geometric construction on a computer. In addition to simulating ruler-and-compass constructions we allow a drag mode. This drag mode allows to move geometric objects that have at least one degree of freedom. The remaining part of the construction should adjust automatically. Thus, during the motion, we have to trace the resulting paths of all geometric objects. This path tracking problem is known as the Tracing Problem from Dynamic Geometry. It combines the step-by-step procedure of doing geometric constructions with the continuous concept of motions. This study is based on the model for Dynamic Geometry used in the interactive geometry software Cinderella. We give a numerical solution to the Tracing Problem based on continuation methods and a reliable algorithm based on real and complex interval arithmetic. Degenerate situations like the intersection of two identical lines lead to critical points in the configuration space and are treated separately.

[1]  De Figueiredo,et al.  Self-validated numerical methods and applications , 1997 .

[2]  Hans Hahn,et al.  Lehrbuch der Funktionentheorie , 1932 .

[3]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[4]  Dominique Michelucci,et al.  A New Robust Algorithm to Trace Curves , 2007, Reliab. Comput..

[5]  Eldon R. Hansen,et al.  A Multidimensional Interval Newton Method , 2006, Reliab. Comput..

[6]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[7]  Britta Denner-Broser On the Decidability of Tracing Problems in Dynamic Geometry , 2004, Automated Deduction in Geometry.

[8]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[9]  Raghavan Narasimhan Compact Riemann Surfaces , 1996 .

[10]  Britta Denner-Broser An algorithm for the tracing problem using interval analysis , 2008, SAC '08.

[11]  Ulrich Kortenkamp,et al.  The Cinderella.2 Manual: Working with The Interactive Geometry Software , 2012 .

[12]  M. Hauenschild Arithmetiken für komplexe Kreise , 2005, Computing.

[13]  W. Fischer,et al.  Ausgewählte Kapitel aus der Funktionentheorie , 1988 .

[14]  R. B. Kearfott,et al.  An Interval Step Control for Continuation Methods , 1994 .

[15]  S. Griffis EDITOR , 1997, Journal of Navigation.

[16]  María José González-López,et al.  Using Dynamic Geometry Software to Simulate Physical Motion , 2001, Int. J. Comput. Math. Learn..

[17]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[18]  Joos Heintz,et al.  Description of the connected components of a semialgebraic set in single exponential time , 1994, Discret. Comput. Geom..

[19]  Dominique Michelucci,et al.  Solving geometric constraints by homotopy , 1995, IEEE Trans. Vis. Comput. Graph..

[20]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[21]  Ulrich Kortenkamp,et al.  A Dynamic Setup for Elementary Geometry , 2002 .

[22]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[23]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[24]  Chee Yap,et al.  The exact computation paradigm , 1995 .

[25]  Ulrich Kortenkamp Foundations of Dynamic Geometry , 2000 .

[26]  Miodrag S. Petkovic,et al.  On the k-th root in circular arithmetic , 2005, Computing.

[27]  Automated deduction in geometry : Third International Workshop, ADG 2000, Zurich, Switzerland, September 25-27, 2000 : revised papers , 2001 .

[28]  J. Stolfi,et al.  Aane Arithmetic and Its Applications to Computer Graphics , 1990 .

[29]  André Heck,et al.  Introduction to Maple , 1993 .

[30]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[31]  G. E. Bredon Topology and geometry , 1993 .

[32]  Dirk Werner Einführung in die höhere Analysis , 2009 .

[33]  Nathalie Revol,et al.  Multiple Precision Interval Packages: Comparing Different Approaches , 2003, Numerical Software with Result Verification.

[34]  Nicholas J. Higham,et al.  Handbook of writing for the mathematical sciences , 1993 .

[35]  日本数学会,et al.  Encyclopedic dictionary of mathematics , 1993 .

[36]  K. Hensel Neue Begründung der arithmetischen Theorie der algebraischen Funktionen einer Variablen , 1919 .

[37]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[38]  L. Bieberbach,et al.  Theorie der geometrischen Konstruktionen , 1954 .

[39]  Historie Zdroje,et al.  Latex , 1910, Botanical Gazette.

[40]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[41]  Thomas Sturm,et al.  A New Approach for Automatic Theorem Proving in Real Geometry , 1998, Journal of Automated Reasoning.

[42]  Ulrich Kortenkamp USING AUTOMATIC THEOREM PROVING TO IMPROVE THE USABILITY OF GEOMETRY SOFTWARE , 2004 .

[43]  A. Neumaier Interval methods for systems of equations , 1990 .

[44]  Arnold Neumaier,et al.  Taylor Forms—Use and Limits , 2003, Reliab. Comput..

[45]  W. Mayer,et al.  Geometrische Konfigurationen , 1930 .

[46]  Pascal Schreck,et al.  Combining symbolic and numerical solvers to simplify indecomposable systems solving , 2008, SAC '08.

[47]  Vladik Kreinovich,et al.  Interval Arithmetic, Affine Arithmetic, Taylor Series Methods: Why, What Next? , 2004, Numerical Algorithms.

[48]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[49]  Ulrich Kortenkamp,et al.  Decision Complexity in Dynamic Geometry , 2000, Automated Deduction in Geometry.

[50]  Franco P. Preparata,et al.  Computational Geometry , 1985, Texts and Monographs in Computer Science.

[51]  Ulrich Kortenkamp,et al.  COMPLEXITY ISSUES IN DYNAMIC GEOMETRY , 2000 .

[52]  G. Alefeld,et al.  Einführung in die Intervallrechnung , 1974 .

[53]  Kurt Mehlhorn,et al.  A Separation Bound for Real Algebraic Expressions , 2001, Algorithmica.

[54]  Jürgen Richter-Gebert,et al.  The Cinderella.2 Manual , 2012 .

[55]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..

[56]  Jürgen Richter-Gebert,et al.  The Interactive Geometry Software Cinderella , 2000 .

[57]  Jorge Stolfi,et al.  Affine Arithmetic: Concepts and Applications , 2004, Numerical Algorithms.

[58]  Nicholas M. Patrikalakis,et al.  A reliable algorithm for computing the topological degree of a mapping in R2 , 2008, Appl. Math. Comput..

[59]  Jan Verschelde,et al.  Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .

[60]  Dongming Wang,et al.  Geometry Machines: From AI to SMC , 1996, AISMC.