Multiobjective (Combinatorial) Optimisation—Some Thoughts on Applications

In recent years there have been considerable advances in methodology (exact and heuristic algorithms) to solve multiobjective optimization problems. Combined with the rapid improvement in computing technology, this means that large scale multiobjective optimization problems arising in real world applications have become tractable.

[1]  John R. Birge,et al.  A Stochastic Programming Approach to the Airline Crew Scheduling Problem , 2006, Transp. Sci..

[2]  Harold P. Benson,et al.  An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the Outcome Set of a Multiple Objective Linear Programming Problem , 1998, J. Glob. Optim..

[3]  D Baltas,et al.  A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy. , 2001, Physics in medicine and biology.

[4]  Michael Lahanas,et al.  Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. , 2003, Physics in medicine and biology.

[5]  Horst W. Hamacher,et al.  A multicriteria optimization approach for inverse radiotherapy planning , 2000 .

[6]  Stephen Miller,et al.  Optimized Crew Scheduling at Air New Zealand , 2001, Interfaces.

[7]  Yue Qi,et al.  Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection , 2007, Ann. Oper. Res..

[8]  Xavier Gandibleux,et al.  Martins' algorithm revisited for multi-objective shortest path problems with a MaxMin cost function , 2006, 4OR.

[9]  E. Martins On a multicriteria shortest path problem , 1984 .

[10]  Xavier Gandibleux,et al.  MultiObjective Programming and Goal Programming , 2003 .

[11]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[12]  H. Romeijn,et al.  A unifying framework for multi-criteria fluence map optimization models. , 2004, Physics in medicine and biology.

[13]  A. Holder Designing Radiotherapy Plans with Elastic Constraints and Interior Point Methods , 2003, Health care management science.

[14]  Lizhen Shao,et al.  Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning , 2008, Math. Methods Oper. Res..

[15]  Matthias Ehrgott,et al.  The Method of Elastic Constraints for Multiobjective Combinatorial Optimization and its Application in Airline Crew Scheduling , 2003 .

[16]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[17]  Hiroshi Konno,et al.  PIECEWISE LINEAR RISK FUNCTION AND PORTFOLIO OPTIMIZATION , 1990 .

[18]  Karsten Weihe,et al.  On the cardinality of the Pareto set in bicriteria shortest path problems , 2006, Ann. Oper. Res..

[19]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[20]  Matthias Ehrgott,et al.  Constructing robust crew schedules with bicriteria optimization , 2002 .

[21]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[22]  Matthias Ehrgott,et al.  A comparison of solution strategies for biobjective shortest path problems , 2009, Comput. Oper. Res..

[23]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .