Convex Hulls of Algebraic Sets

This article describes a method to compute successive convex approximations of the convex hull of the solutions to a system of polynomial equations over the reals. The method relies on sums of squares of polynomials and the dual theory of moment matrices. The main feature of the technique is that all computations are done modulo the ideal generated by the polynomials defining the set to the convexified. This work was motivated by questions raised by Lovasz concerning extensions of the theta body of a graph to arbitrary real algebraic varieties, and hence the relaxations described here are called theta bodies. The convexification process can be seen as an incarnation of Lasserre’s hierarchy of convex relaxations of a real semialgebraic set. When the defining ideal is real radical the results become especially nice. We provide several examples of the method and discuss convergence issues. Finite convergence, especially after the first step of the method, can be described explicitly for finite point sets.

[1]  Victoria Powers,et al.  The moment problem for non-compact semialgebraic sets , 2001 .

[2]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[3]  H. Lombardi,et al.  Une borne sur les degres pour le theoreme des zeros reel effectif , 1992 .

[4]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[5]  Rekha R. Thomas,et al.  A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs , 2009, Math. Program..

[6]  Rekha R. Thomas,et al.  Theta Bodies for Polynomial Ideals , 2008, SIAM J. Optim..

[7]  Jean B. Lasserre,et al.  An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs , 2002, SIAM J. Optim..

[8]  Monique Laurent,et al.  Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals , 2008, Found. Comput. Math..

[9]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[10]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[11]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[12]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[13]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[14]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[15]  Monique Laurent,et al.  Semidefinite representations for finite varieties , 2007, Math. Program..

[16]  Richard P. Stanley,et al.  Decompositions of Rational Convex Polytopes , 1980 .

[17]  Franz Rendl,et al.  Semidefinite programming and integer programming , 2002 .

[18]  Seth Sullivant Compressed polytopes and statistical disclosure limitation , 2004 .

[19]  Jesús A. De Loera,et al.  Recognizing Graph Theoretic Properties with Polynomial Ideals , 2010, Electron. J. Comb..

[20]  Monique Laurent,et al.  Semidefinite Relaxations for Max-Cut , 2004, The Sharpest Cut.

[21]  Jean B. Lasserre,et al.  Convex sets with semidefinite representation , 2009, Math. Program..

[22]  João Gouveia,et al.  Positive Polynomials and Projections of Spectrahedra , 2009, SIAM J. Optim..

[23]  Gottfried Tinhofer,et al.  Graph isomorphism and theorems of Birkhoff type , 1986, Computing.

[24]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[25]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[26]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[27]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[28]  László Lovász,et al.  Semidefinite Programs and Combinatorial Optimization , 2003 .

[29]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[30]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[31]  William J. Cook,et al.  Combinatorial optimization , 1997 .