A comparative analysis of multiaxial fatigue models under random loading
暂无分享,去创建一个
Alfonso Fernández-Canteli | M. Muniz-Calvente | Ibai Portugal | Mireia Olave | Aitor Zurutuza | Arkaitz López | Iker Urresti | M. Muñiz‐Calvente | A. Fernández‐Canteli | Í. Urresti | M. Olave | A. Zurutuza | A. López | I. Portugal
[1] Alfonso Fernández-Canteli,et al. A probabilistic interpretation of the Miner number for fatigue life prediction , 2014 .
[2] Andrea Carpinteri,et al. Spectral fatigue life estimation for non-proportional multiaxial random loading , 2016 .
[3] Andrea Carpinteri,et al. Fatigue life evaluation of metallic structures under multiaxial random loading , 2016 .
[4] G. J. Moyar,et al. Orthogonal Shear Stress Amplitude as a Function of Rolling Contact Ellipticity and Depth , 1997 .
[5] Rongjing Hong,et al. Reliability-based residual life prediction of large-size low-speed slewing bearings , 2014 .
[6] Andrea Carpinteri,et al. Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts , 2016 .
[8] Candida Petrogalli,et al. Failure assessment of subsurface rolling contact fatigue in surface hardened components , 2013 .
[9] Alfonso Fernández-Canteli,et al. Methodology to evaluate fatigue damage under multiaxial random loading , 2017 .
[10] D. L. Mcdiarmid. A GENERAL CRITERION FOR HIGH CYCLE MULTIAXIAL FATIGUE FAILURE , 1991 .
[11] Andrea Carpinteri,et al. An alternative definition of the shear stress amplitude based on the Maximum Rectangular Hull method and application to the C‐S (Carpinteri‐Spagnoli) criterion , 2014 .
[12] José A.F.O. Correia,et al. A probabilistic analysis of Miner's law for different loading conditions , 2016 .
[13] Luis Reis,et al. Comparative study on biaxial low‐cycle fatigue behaviour of three structural steels , 2006 .
[14] Trevor S. Slack,et al. A Review of Rolling Contact Fatigue , 2009 .
[15] I. Papadopoulos,et al. Critical plane approaches in high-cycle fatigue : On the definition of the amplitude and mean value of the shear stress acting on the critical plane , 1998 .
[16] F. Schwack,et al. Comparison of Life Calculations for Oscillating Bearings Considering Individual Pitch Control in Wind Turbines , 2016 .
[17] Luis Reis,et al. A multiaxial fatigue approach to Rolling Contact Fatigue in railways , 2014 .
[18] José A.F.O. Correia,et al. A probabilistic approach for multiaxial fatigue criteria , 2016 .
[19] I. Prebil,et al. Low-cycle fatigue properties of steel 42CrMo4 , 2003 .
[20] Luis Reis,et al. Simulation of cyclic stress/strain evolutions for multiaxial fatigue life prediction , 2006 .
[21] T. E. Tallian,et al. Failure atlas for Hertz contact machine elements , 1992 .
[22] L. Houpert,et al. Rolling Bearing Stress Based Life—Part I: Calculation Model , 2012 .
[23] Luca Susmel,et al. Multiaxial notch fatigue , 2009 .
[24] Andrea Carpinteri,et al. Critical Plane Orientation Influence on Multiaxial High-Cycle Fatigue Assessment , 2015 .
[25] Michele Ciavarella,et al. A comparison of multiaxial fatigue criteria as applied to rolling contact fatigue , 2010 .
[26] D. L. McDiarmid,et al. A SHEAR STRESS BASED CRITICAL‐PLANE CRITERION OF MULTIAXIAL FATIGUE FAILURE FOR DESIGN AND LIFE PREDICTION , 1994 .
[27] A. Fernández‐Canteli,et al. A Unified Statistical Methodology for Modeling Fatigue Damage , 2010 .
[28] Antonio Gabelli,et al. The fatigue limit of bearing steels – Part II: Characterization for life rating standards , 2012 .
[29] Ky Dang Van. Modelling of damage induced by contacts between solids , 2008 .
[30] Hertz. On the Contact of Elastic Solids , 1882 .