3D d STORM Imaging of Fixed Brain Tissue.

[1]  Mike Heilemann,et al.  SuReSim: simulating localization microscopy experiments from ground truth models , 2016, Nature Methods.

[2]  R. Tampé,et al.  SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging. , 2015, Angewandte Chemie.

[3]  M. Heilemann,et al.  Click chemistry facilitates direct labelling and super-resolution imaging of nucleic acids and proteins† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ra01027b Click here for additional data file. , 2014, RSC advances.

[4]  Mike Heilemann,et al.  Single‐molecule super‐resolution imaging by tryptophan‐quenching‐induced photoswitching of phalloidin‐fluorophore conjugates , 2014, Microscopy research and technique.

[5]  Guy M. Hagen,et al.  ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging , 2014, Bioinform..

[6]  U. Endesfelder,et al.  A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment , 2014, Histochemistry and Cell Biology.

[7]  H. Erfle,et al.  Correlative light microscopy for high-content screening. , 2013, BioTechniques.

[8]  M. Beck,et al.  Fourier ring correlation as a resolution criterion for super-resolution microscopy. , 2013, Journal of structural biology.

[9]  Mike Heilemann,et al.  Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. , 2013, Physical chemistry chemical physics : PCCP.

[10]  Sjoerd Stallinga,et al.  Measuring image resolution in optical nanoscopy , 2013, Nature Methods.

[11]  Mike Heilemann,et al.  Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples , 2012, PloS one.

[12]  T. Kuner,et al.  Serial Section Scanning Electron Microscopy (S3EM) on Silicon Wafers for Ultra-Structural Volume Imaging of Cells and Tissues , 2012, PloS one.

[13]  Stephan J Sigrist,et al.  Multi‐colour direct STORM with red emitting carbocyanines , 2012, Biology of the cell.

[14]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[15]  Steven P. Callahan,et al.  Sample drift correction in 3D fluorescence photoactivation localization microscopy , 2011 .

[16]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[17]  T. Kuner,et al.  Targeted three‐dimensional immunohistochemistry reveals localization of presynaptic proteins Bassoon and Piccolo in the rat calyx of Held before and after the onset of hearing , 2010, The Journal of comparative neurology.

[18]  Keith A. Lidke,et al.  Fast, single-molecule localization that achieves theoretically minimum uncertainty , 2010, Nature Methods.

[19]  S Wolter,et al.  Real‐time computation of subdiffraction‐resolution fluorescence images , 2010, Journal of microscopy.

[20]  Sören Doose,et al.  Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[22]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[23]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[24]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[25]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[26]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[27]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[28]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[29]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[30]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[31]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[32]  V. Wimmer,et al.  Targeted in vivo expression of proteins in the calyx of Held , 2004, Pflügers Archiv.

[33]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[34]  H. P. Kao,et al.  Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. , 1994, Biophysical journal.

[35]  S. Singer,et al.  Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken cardiac muscle , 1983, The Journal of cell biology.